

## **Summary Report**

# REVIEW OF CHEMICAL AND BIOLOGICAL DATA ON SEDIMENTS FOR THE CHANNEL DEEPENING PROJECT PORT OF LOS ANGELES

Prepared for:

Port of Los Angeles San Pedro, CA

and

DMJM-Harris Long Beach, CA

Kinnetic Laboratories/ToxScan, Inc. January 2002

## **Summary Report**

# REVIEW OF CHEMICAL AND BIOLOGICAL DATA ON SEDIMENTS FOR THE CHANNEL DEEPENING PROJECT

# Kinnetic Laboratories/ToxScan, Inc. January, 2002

## **Table of Contents**

|      |                          |                                           | Page No. |  |  |  |
|------|--------------------------|-------------------------------------------|----------|--|--|--|
| Tabl | e of Co                  | ntents                                    | i        |  |  |  |
| List | of Figu                  | res and Tables                            | ii       |  |  |  |
| 1.0  | EXE                      | CUTIVE SUMMARY                            | 1        |  |  |  |
| 2.0  | DAT                      | 'A SOURCES                                | 4        |  |  |  |
| 3.0  | SEDIMENT TESTING RESULTS |                                           |          |  |  |  |
|      | 3.1                      | Main Channels                             | 5        |  |  |  |
|      |                          | 3.1.1 Areas Unsuitable for Ocean Disposal | 6        |  |  |  |
|      |                          | 3.1.2 Areas Suitable for Ocean Disposal   | 7        |  |  |  |
|      | 3.2                      | 12                                        |          |  |  |  |
|      |                          | 3.2.1 Areas Unsuitable for Ocean Disposal | 12       |  |  |  |
|      |                          | 3.2.2 Areas Suitable for Ocean Disposal   |          |  |  |  |
|      | 3.3                      | Outer Harbor                              | 16       |  |  |  |
| 4.0  | SUM                      | IMARY OF REUSE/DISPOSAL SUITABILITIES     | 18       |  |  |  |
| 5.0  | REF                      | TERENCES CITED                            | 20       |  |  |  |
| APP  | ENDIC                    | CES                                       |          |  |  |  |

## Appendix A: Main Channel

A-1 Chemical Analysis and Toxicity Evaluation of Sediments, Pier 400 Deep Navigation Project Borrow Project (KLI/ToxScan, 1996)

Environmental Evaluation of Sediments for the Channel Deepening Program, Port of Los Angeles (KLI/ToxScan, 1997)

#### **APPENDICES** (continued)

A-2 Results of Physical, Chemical, and Bioassay Testing of Sediments Collected for the Port of Los Angeles Modified Channel Deepening Program (MEC, 2001a)

#### **Appendix B: Southwest Slip Area**

B-1 Chemical and Biological Analysis of Sediments in the Southwest Slip Project Area (KLI/ToxScan, 2002)

#### **Appendix C: Outer Harbor**

- C-1 Grab Sample Data, Shallow Water Habitat Extension (KLI/ToxScan, 2002)
- C-2 Previous Sediment Quality Data from the Area of the Proposed Cabrillo Shallow Water Habitat Extension and from the Proposed Pier 400 Submerged Materials Storage Area (KLI, 1991).

#### **List of Figures and Tables**

|           |                                                           | <u>Page No.</u> |
|-----------|-----------------------------------------------------------|-----------------|
| Figure 1. | Dredge Material Test Units, Port of Los Angeles           | 3               |
| Table 1.  | Dredge Sediment Properties, Port of Los Angeles - Channel |                 |
|           | Deepening Project                                         | 19              |



#### **Summary Report**

# REVIEW OF CHEMICAL AND BIOLOGICAL DATA ON SEDIMENTS FOR THE CHANNEL DEEPENING PROJECT

## Kinnetic Laboratories/ToxScan, Inc. January, 2002

#### 1.0 EXECUTIVE SUMMARY

**Project Description.** The U.S. Army Corps of Engineers in conjunction with the Los Angeles Harbor Department is proposing (USACE, 2000) to carry out deepening of the Main Channels and selected areas in the Port of Los Angeles inner harbor to a depth of 53 feet plus 2 feet over dredge (-55 feet MLLW).

Sites considered for disposal of the sediments to be dredged from the channels include the landfills of another project, the Southwest Basin development, particularly with respect to disposal of channel sediments unsuitable for ocean disposal. Other reuse or storage opportunities within the Port include the expansion of the Cabrillo Shallow Water Habitat area near the San Pedro breakwater in the outer Harbor, expansion of the Pier 300 landfill, and a submerged material storage site adjacent to the Pier 400 landfill. Offshore ocean disposal at the LA-3 disposal site is an option for clean dredge materials. However, no ocean disposal of dredged materials is currently proposed. All sediments will be disposed of at disposal sites within the Harbor as described above.

<u>Purpose of This Report.</u> The purpose of this data review is to collect and present sediment testing results for all of the sediments involved in this Channel Deepening Project. Data were developed for all of the dredge areas identified. These dredge material testing units are illustrated in Figure 1.

<u>Sediment Testing Results.</u> Sediments from the test units were sampled by vibracores and subjected to physical, chemical, and biological testing. Test protocols and evaluation criteria for dredge materials were used as specified by the U.S. Environmental Protection Agency and by the U.S. Army Corps of Engineers (USEPA/USACE 1991; 1998). Sediments were deemed unsuitable for ocean disposal if these evaluations concluded that the given sediment unit did not meet criteria for open water disposal.

Four dredge areas unsuitable for ocean disposal were identified. These areas are listed below and shown on Figure 1:

- Area FM-1 in the Main Channel
- Area FG-2B in the West Basin
- Southwest Slip Dike and Basin Area
- Area A-1, Lower End of proposed Linear Berth (Berth 100 South Extension)

Sediments from dredge units FG-2B and FM-1 were only moderately contaminated, with a few metals and organic contaminant concentrations exceeding NOAA (Long et al., 1995) ERL or ERM guidance values. These sediments are being dredged for the purpose of deepening navigational channels.

Sediments within area FG-2B in the West Basin were found to contain levels of mercury, nickel, DDT compounds, and PCBs in excess of ERL guidance values. However, significant toxicity was measured with a benthic amphipod test. Bioaccumulation test results showed lead, mercury, DDD, and PCBs bio-accumulated in test tissues to significant levels.

Sediments in area FM-1 showed metal levels to be elevated, more so than for either the coarse- or fine-grained materials tested from the inner reaches of the Main Channel. Organic compounds (DDTs and PCBs) were elevated to relatively high levels and were greater than other dredged materials in the Main Channel. Supplemental sampling of these materials demonstrated that the metals were found primarily in the formation (lower layer) materials while the organic compounds were distributed primarily in the depositional (top layer) materials. Significant toxicity was measured in two benthic toxicity tests, while slight bioaccumulation of copper, mercury, and lead occurred. USEPA concluded (USEPA, 1998a) that the surface depositional materials within the FM-1 area were not suitable for open water disposal but that the formation materials are suitable for open water disposal. Furthermore, USEPA (1998b) delineated two pockets of the surface material that are suitable for unconfined aquatic disposal. These suitable areas were in the northwestern corner and in the southeastern area of the FM-1 area. Recent sampling of the area just south of the Pilot Station (MEC, 2002) showed that these sediments were suitable for ocean disposal.

Sediments in the Southwest Slip were highly contaminated, most with pronounced petroleum odors, and all with very high concentrations of metals, petroleum hydrocarbons and PAHs, high DDT compounds, and high PCBs. Sediments in the small Area A-1 (Berth 100 South Extension) showed moderate contamination. These sediments in the Slip and along the proposed pier face need to be dredged for dike keys, and for minor reconfiguration of the bottom of the Slip where new fill is not to be placed at this time.

Sediments from these dredge units deemed unsuitable for ocean disposal will need to be placed within a fill area. Elutriate and suspended phase bioassay test results from all the dredge areas indicate that adverse water quality impacts would not be expected during open water disposal, or from decant water from a confined landfill.



Figure 1. Dredge Material Test Units, Port of Los Angeles.



#### 2.0 DATA SOURCES

The data sources for sediment quality data for all sediments that need to be dredged and reused or disposed of for this project are cited and discussed in sections below, and detailed data are summarized in the attached Appendices. Detailed maps are also given in each of the Appendices.

The major source for sediment quality data for the main channels in the Inner Harbor is a study done by the Port of Los Angeles in 1997 in anticipation of channel deepening (KLI/ToxScan, 1996; 1997). The original channel deepening testing was done to a design depth of –50 feet MLLW, plus a 2-foot overdredge allowance to a total depth of -52 feet MLLW. Previously, a small area of the main channel where sand resources exist was explored in 1996 and later partially mined for borrow material for the construction of Pier 400. The present proposal is to dredge to a total depth of -55 feet MLLW (including two feet of overdredge). Recent regulatory considerations have allowed a Tier I exemption from further testing for this deeper layer under dredge units that were deemed to be suitable for ocean disposal in the earlier testing, and required further testing under certain units deemed not suitable for ocean disposal (MEC, 2001a). This further testing was subsequently carried out (MEC, 2001a).

In addition, a small area that lies south of the Pilot Station was proposed for dredging and was also tested in 2001 (MEC, 2001a).

The required fill for the Southwest Slip terminal development project was proposed as a disposal site for sediments dredged from the main channel. In particular, those sediments deemed to be unsuitable for ocean disposal need to be placed in a landfill.

Additional testing of sediments local to the Southwest Slip area was also required, as dredging within the slip is necessary to provide keys for dike placements, to reshape an existing storm water channel that discharges through the Southwest Slip, and to remove some high spots in the Southwest Slip. Additional coring and testing was carried out in August 2001 to characterize these Southwest Slip area sediments (KLI/ToxScan, 2002). A few surface sediments in the area of the Cabrillo Shallow Water Habitat Extension, proposed as an additional disposal site for clean sediments, were also tested.



#### 3.0 SEDIMENT TESTING RESULTS

The results of the sediment testing carried out to support the Port of Los Angeles Channel Deepening along with associated disposal options, are summarized briefly below. Dredge test units are shown in Figure 1, and more detailed maps of dredge test units are given in the relevant Appendix.

More detailed information is supplied in the summary data appendices from these different studies attached to this report, and organized according to the original reports. In general, these summary appendices include the dredge unit composite test results, but not those of every individual core sample. These appendices include maps and positioning information for sediment cores taken, and include summary tables of the chemical and biological test results for each study.

Chemical concentrations of contaminants found within the sediments are compared to sediment quality guidelines (Long et al., 1995) developed by NOAA. For any given contaminant the Effects Range Low (ERL) guideline represents the 10<sup>th</sup> percentile concentration value in the NOAA data base that might be expected to cause adverse biological effects and the Effects Range Medium (ERM) reflects the 50<sup>th</sup> percentile value in the data base. In addition, toxicity and bioaccumulation testing was carried out to directly measure biological effects using standard dredge material protocols (USEPA/USACE 1991; 1998). If toxicity or bioaccumulation effects were measured, then the sediments were deemed "unsuitable for ocean disposal". Sediments were also used to prepare elutriates (essentially a 4/1 vol/vol ambient seawater extraction) which were subjected to chemical analysis and/or suspended phase toxicity testing to determine potential water quality effects during dredging or disposal operations. Concentrations of contaminants in the elutriates are compared to water quality standards to determine whether such standards are exceeded with or without expected dilutions. These standards are written in terms of dissolved constituents. Suspended phase toxicity results are also interpreted as to whether Limiting Permissible Concentrations (LPC) values are exceeded (e.g. whether toxicity would be present at expected dilutions).

#### 3.1 Main Channel

Sediments existing in the Main Channel of the Port of Los Angeles have been characterized and the testing results reported in "Environmental Evaluation of Sediments for the Channel Deepening Program, Port of Los Angeles", KLI/ToxScan, 1997. These data were supplemented by recent data obtained in the dredge sub-area FG-2B for deeper sediments between - 52 to -55 feet MLLW because it is now proposed to go to these deeper depths (MEC, 2001a). This more recent study also obtained data from a second area immediately south of the Port Pilot's station at the entrance to the inner harbor, to the west of previous cores taken in the dredge sub-area FM-1 (MEC, 2001a). In addition, recent data have also been taken for the sediments at the Berth 100 side of the proposed Southwest terminal (MEC, 2001b) that is part of a separate, on-going project. Finally, sediments within the Southwest Slip have been characterized (KLI/ToxScan, 2002). Maps of the dredge areas tested in the above cited references are included in Appendix B.

#### 3.1.1 Areas Unsuitable for Ocean Disposal

Two areas of the Main Channel have been identified where sediment dredge materials unsuitable for ocean disposal exist. These areas are listed below:

- Area FG-2B in the West Basin
- Area FM-1 in the Main Channel

#### **Area FG-2B in the West Basin**

Sediments within the dredge area FG-2B were judged (USEPA, 1998a) to be suitable for open water disposal except for a sub-area around test cores FG2-6 and FG2-8 in the southwest area of FG-2B. Sediments within this subarea were found to contain levels of mercury, nickel, and DDT compounds in excess of ERL guidance values, and DDE and PCBs in excess of ERM guidance values. Significant toxicity was measured with a benthic amphipod test and bioaccumulation test results that showed that lead, mercury, DDD, and PCBs bio-accumulated in test tissues. This led to the conclusion that this southwestern sub-area of FG-2B sediments, represented by test cores FG2-6 and FG2-8, would not be suitable for open water disposal. The remainder of Area FG-2B, judged to be suitable for open water disposal, is discussed in Section 3.1.2 of this summary.

Elutriate tests were not run on these sediments, but suspended phase bioassays showed that adverse water quality impacts would not be expected during open water disposal, or from decant water from a confined landfill.

#### Area FM-1 in the Main Channel

The bulk chemistry results for these materials showed metal levels to be elevated, more so than for either the coarse- or fine-grained materials from the inner reaches of the Main Channel. Organic compounds (DDTs and PCBs) were elevated to relatively high levels and were greater than other tested materials in the Main Channel. Supplemental sampling of these materials demonstrated that the metals were found primarily in the formation (lower layer) materials while the organic compounds were distributed primarily in the depositional (top layer) materials. Significant toxicity was measured in two benthic toxicity tests, while slight bioaccumulation of copper, mercury, and lead occurred. USEPA concluded (USEPA, 1998a) that the depositional layers within the FM-1 area were not suitable for open water disposal but that the formation materials are suitable for open water disposal.

Furthermore, USEPA (1998b) delineated two pockets of material in the depositional layer that are suitable for unconfined aquatic disposal. These suitable areas were in the northwestern corner (within Area FM-1B) and in the southeastern portion (within Area FM-1A) of the FM-1 region, and are discussed in Section 3.1.2 of this summary.

Elutriate tests were not run on these sediments. Suspended particulate phase bioassays showed that either no dilution or a low dilution value would assure that adverse water quality impacts would not be expected from disposal operations, or from decant water from a confined landfill.

#### 3.1.2 Areas Suitable for Ocean Disposal

In the Main Channel areas (Appendices A-1 & A-2), except for the dredge units identified above that contain materials unsuitable for ocean disposal, all sediments tested were judged to be suitable for open water disposal or for use as fill material. The coarse grained materials are valuable as fill material because of their better structural properties. The upper-layer, finer grained materials that were judged not to be contaminated are less desirable as fill, but could be used either for fill or disposed of at an approved open-water site.

Elutriate and suspended phase bioassay results on these materials indicated that water quality impacts would not be expected during open water disposal, or from decant water from a confined landfill disposal area.

#### **Dredge Material Unit CG-1**

Ten sediment cores (KLI/ToxScan, 1996; Appendix A-1) were collected and combined into two composite areas (CG-1A and CG-1B). Each composite was vertically divided to form top (mudline to -52' MLLW) and bottom (-52' to -60' MLLW) subunits.

Sediment chemical analysis showed DDE and total DDTs > ERLs in both top composites, and no ERL exceedance in either bottom composite.

Both bottom elutriates showed copper slightly in excess of water quality standards without dilution.

No biological testing was performed, since testing was designed to assess sediment suitability for use as fill in Pier 400 as these were coarse-grained materials. Detailed results are presented in KLI/ToxScan 1996.

#### **Dredge Material Unit CG-2**

Fourteen sediment cores were collected and combined into three composite areas (CG-2A (5 cores), CG-2B (5 cores) and CG-3C (4 cores). A and B composites were vertically divided to form top (mudline to -52' MLLW) and bottom (-52' to about -65' MLLW) subunits. In the CG-3 composite area, mudline was about -50' MLLW, so only a bottom composite was formed (mudline to about -65' MLLW).

Sediment chemical analysis of the CG- 2A top composite showed DDE and total DDTs > ERMs and copper, mercury and total PCBs > ERLs. The CG-2B top composite showed DDE, total DDTs and total PCBs > ERLs. The CG-2A bottom composite showed no

ERL or ERM exceedances, while the CG-2B and CG-2C bottom composites showed DDE and total DDTs > ERLs.

None of the elutriates showed contaminants in excess of water quality standards. No biological testing was performed, since testing was designed to assess sediment suitability for use as fill.

No biological testing was performed, since testing was designed to assess sediment suitability for use as fill as these are coarse-grained materials. Detailed results are presented in KLI/ToxScan, 1997.

## **Dredge Material Unit CG-3**

Thirteen sediment cores were collected and combined into three composite areas (CG-3A (5 cores), CG-3B (5 cores) and CG-3C (3 cores).) A and B composites were vertically divided to form top (mudline to -52' MLLW) and bottom (-52' to about -65' MLLW) subunits. In the CG-3C composite area, mudline was about -50' MLLW, so only a bottom composite was formed (mudline to about -65' MLLW).

Sediment chemical analysis of the CG-3A top composite showed copper, mercury, nickel, DDE, total DDTs and total PCBs > ERLs . The CG-3B top composite showed DDE and total PCBs > ERMs, as well as mercury, total DDTs, total PAHs and HPAHs > ERLs. The CG-3A and CG-3B bottom composites showed no ERL or ERM exceedances, while the CG-3C bottom composite showed DDE, total DDTs and total PCBs > ERLs.

None of the elutriates showed contaminants in excess of water quality standards. No biological testing was performed, since testing was designed to assess sediment suitability for use as fill.

No biological testing was performed, since testing was designed to assess sediment suitability for use as fill because these are coarse-grained materials. Detailed results are presented in KLI/ToxScan, 1997.

#### **Dredge Material Unit CG-4**

Ten sediment cores were collected and combined into two composite areas CG-4A (5 cores), and CG-4B (5 cores). Both composites were vertically divided to form top (mudline to -52' MLLW) and bottom (-52' to about -65' MLLW) subunits.

Sediment chemical analysis of the CG-4A top composite showed DDE > ERM and total DDTs and total PCBs > ERLs. The CG-4B top composite showed DDE, total DDTs and total PCBs > ERLs. The CG-4A bottom composite showed mercury, DDE, total DDTs and total PCBs > ERLs. The CG-4B bottom composite showed only nickel > its ERL

None of the elutriates showed contaminants in excess of water quality standards. No biological testing was performed, since testing was designed to assess sediment suitability for use as fill.

No biological testing was performed, since testing was designed to assess sediment suitability for use as fill as these were coarse grianed materials. Detailed results are presented in KLI/ToxScan, 1997.

#### **Dredge Material Unit FG-1**

Twenty sediment cores were collected (two at each of ten locations) within area FG-1 and combined into two composite samples FG-1A (5 locations) and FG-1B (5 locations). Sampling was performed from mudline to -52' MLLW, and there was no vertical subdivision.

Sediment chemical analysis of the FG-1A composite showed copper, mercury, total DDTs and total PCBs > ERLs, and DDE > ERM. The FG-1B composite showed mercury, nickel, total DDTs and total PCBs > ERLs, and DDE > ERM.

Water column toxicity tests showed that undiluted elutriates of both FG-1A and FG-1B composites produced statistically significantly decreased survival of mussel larvae compared with dilution water controls. However, the decreased survival was small in magnitude with the LC50 for both elutriates >100%. Therefore the Limiting Permissible Concentration (LPC) was not exceeded (USEPA/USACE 1991; 1998). There was no other significant toxicity result, neither water column nor benthic for either sediment composite.

Bioaccumulation assessments using *Macoma* (clam) showed that the FG-1A composite produced minor but statistically significant elevation of lead, mercury and DDD over LA2 and LA3 reference tissue levels, and of DDE over LA3 reference. The FG-1B composite produced elevated lead over both references and elevated benzo(b)fluoranthene (over LA2) and DDE (over LA3). *Nereis* tissues showed no increased contaminant levels over LA2 reference, but showed elevated lead (FG-1A) and lead and DDE (FG-1B) over LA3 reference.

In general, the tissue concentration of the metals and organic compounds in both species were in the range of 1.5 to 3x those in tissue from LA2 and LA3 reference sites. Many of the significant increases were influenced by the arbitrary assignment of numerical values equal to 50% of reporting limits to tissues in which an analyte was not detected. Evaluation of these data concluded that these materials were suitable for ocean disposal (USEPA, 1998a). Detailed results are presented in KLI/ToxScan, 1997.

## Dredge Material Unit FG-2

Twenty sediment cores were collected (two at each of ten locations) within area FG-2 and combined into two composite samples FG-2A (5 locations) and FG-2B (5 locations).

Sampling was performed from mudline to -52' MLLW, and there was no vertical subdivision.

Sediment chemical analysis of the FG-2A composite showed DDE, total DDTs and total PCBs > ERLs, respectively.

Water column bioassays showed that undiluted elutriate of FG-2A composite sediments produced no significant deleterious effects to mussel larvae, mysids, or fish compared with dilution water controls. Benthic bioassays showed no significant mortality to amphipods, worms, or mysids after exposure to FG-2A composite sediments.

Bioaccumulation assessments using *Macoma* (clam) and Nereis (worm) showed that composite FG-2A produced no significant elevation of any measured contaminant over reference tissue levels.

As discussed in Section 3.1.1 above, the composite sample from Area FG-2B showed chemical contamination, toxicity and bioaccumulation that suggested unsuitability for open water disposal. Based upon the distribution of contaminants within Area FG-2B (as revealed by individual core chemistry data), USEPA (1998a) approved the portion of Area FG-2B represented by sediment cores FG2-7, FG2-9 and FG2-10 for open water disposal. Detailed results, including individual core chemistry data, are presented in KLI/ToxScan, 1997.

#### **Dredge Material Unit FG-3**

Thirty sediment cores were collected (two at each of fifteen locations) within area FG-3 and combined into three composite samples FG-3A (5 locations), FG-3B (5 locations) and FG-3C (5 locations). Sampling was performed from mudline to -52' MLLW, and there was no vertical subdivision.

Sediment chemical analysis of the FG-3A, FG-3B and FG-3C composites showed all three composites with copper, mercury, nickel, DDE, total DDTs and total PCBs > ERLs.

Water column bioassays showed that undiluted elutriates of FG-3A and FG-3C composite sediments showed no significantly decreased survival of mussel larvae, but the FG-3B elutriate produced a small but statistically significant decrease in larval survival (LC50 >100%) and LPC limits were not exceeded.. There were no significant deleterious effects of any elutriate to mysids or fish. Benthic bioassay tests showed no significant mortality to amphipods, worms, or mysids after exposure to FG-3A, FG-3B, or FG-3C composite sediments.

Bioaccumulation assessments using *Macoma* (clam) showed that composite FG-3A produced statistically significant elevation of copper, lead, and benzo(b)fluoranthene over LA2 reference tissue levels, and of copper, lead, and DDE over LA3 reference tissue levels. Composite FG-3B produced significant elevations of lead, benzo(a)anthracene, chrysene, and benzo(b)fluoranthene over LA2 reference levels and of lead and total

PAHs over LA3 reference tissues. Composite FG-3C produced elevated lead and DDD over LA2 and elevated lead, DDD and DDE over LA3.

Analysis of *Nereis* (worm) tissue showed no significant bioaccumulation from composite FG-3A, over LA2 reference and significant elevation of only DDE over LA3 reference. From composite FG-3B, DDD, DDE, pyrene and total PAHs were elevated over LA2 reference tissues, and DDD was increased over LA3 reference concentration. Composite FG-3C produced no significant bioaccumulation over LA2 and slightly elevated lead over LA3.

Tissue levels of all significant analytes ranged from 2-4 times reference tissue concentrations, thus were incrementally small. Several were clearly influenced by the arbitrary assignment of numerical values equal to 50% of reporting limits to reference tissues in which an analyte was not detected.

USEPA (1998a) determined that these small increments of tissue contamination over reference levels do not constitute a "substantial" difference, and judged that these FG-3 sediments were suitable for ocean disposal at LA2 or LA3.

Detailed results are presented in KLI/ToxScan, 1997.

#### **Dredge Material Unit FM-1**

Twenty sediment cores were collected (two at each of ten locations) within area FM-1 and combined into two composite samples FM-1A (5 locations) and FM-1B (5 locations). Sampling was performed from mudline to -52' MLLW, and there was no vertical subdivision. It was noted that these dredge units consist of fine-grained depositional material overlying consolidated material, identified as formational Malaga Mudstone. Sediment chemistry analysis was done on the FM-1A and FM-1B composites and their component cores, and on samples of Malaga mudstone from cores FM1-2 and FM1-8.

As discussed above in Section 3.1.1, chemical contamination levels, toxicity responses and bioaccumulation results on both FM-1A and FM-1B composites suggested that sediments within dredge unit FM-1 were unsuitable for open water disposal. Supplementary chemical analyses revealed that organic contamination was present exclusively in the depositional sediments overlying the Malaga Mudstone formation material, while the formation material itself contained some elevated levels of metal contaminants. USEPA (1998a) concluded that the overlying depositional sediments in Area FM-1 were not suitable for open water disposal.

A subsequent USEPA memo (USEPA, 1998b) examined individual core chemistry analyses showing that, within Area FM-1A, the concentration of DDT compounds and PCBs is much lower in cores FM1-1 and FM1-3 compared with the other three cores. comprising Area FM-1A. Likewise, the concentration of DDTs and PCBs in cores FM1-8 and FM1-10 is much lower than in the other three cores comprising Area FM-1B. Based on these core chemistry results, USEPA (1998b) concluded that the portion of

Area FM-1A represented by test cores FM1-1 and FM1-3, and the portion of Area FM-1B represented by test cores FM1-8 and FM1-10 are suitable for ocean disposal. Detailed results, including core chemistry data, are presented in KLI/ToxScan, 1997.

USEPA also concluded that the lower layer material underlying the recent depositional layer (Malaga Mudstone) was suitable for ocean disposal (1998a). This determination was made using chemical analyses of the mudstone layer by itself (KLI/ToxScan, 1997). The original tests were done on vertically composited samples that included both the recent depositional sediments and the underlying Malaga Mudstone. Seven metals and PCBs were present in the vertically composited FM-1 and FM-2 samples at somewhat elevated concentrations, and DDTs exceeded ERM values. Of these lead, mercury, and the organics were contributed in part or wholly from the overlying silt layer. Toxicity exceedances were very small as measured on the composite samples with two benthic organisms. Measured bioaccumulation of both copper and mercury were also small (1.5x), and the lead bioaccumulation was small and perhaps a statistical artifact. conclusion was that organic contamination was present exclusively in the depositional sediments overlying the Malaga Mudstone formation material, while the formation material itself contained some elevated levels of metal contaminants. Other test results available on Malaga Mudstone samples from Fugro borings in the outer harbor showed generally consistent chemical results with those of the Malaga Mudstone from the dredge units of interest. In addition, bioassay tests of the Malaga Mudstone from a nearby station just outside the Main Channel Entrance did not show toxicity (KLI, 1991). Thus, while the formation material underlying the depositional layer of these test areas has somewhat elevated levels of metals, it appears that these are from non-anthropogenic sources, do not cause toxicity, and do not cause significant bioaccumulation. Therefore, it was concluded that this Malaga Mudstone material was suitable for ocean disposal.

#### 3.2 Southwest Slip Area (Appendix B-1)

#### 3.2.1 Areas Unsuitable for Ocean Disposal

#### Area A-1, South Extension of Berth 100

Test data available as part of a separate project for the sediments along the east side of the proposed Southwest Slip terminal area (along the Pier 100 area) where the berths are to be located show that these sediments are suitable for open water disposal (MEC, 2001b).

However, at the very southern end of the new proposed linear berth, an area apparently has not been dredged as part of the previous realignment of the shoreline (corner cut off). Dredging for the dike key is necessary and it is proposed to place this material into the Southwest Slip fill area. Testing of these sediments was done recently (KLI/ToxScan, 2002) at the same time as the Southwest Slip (see discussion below).

Samples taken in the A-1 area showed top layer concentrations of total DDT's and total PCBs that exceeded the ERL guidelines, but no metals exceeded guidelines. The A-1

Bottom layer was clean chemically, with only arsenic exceeding the ERL guidelines. Elutriate chemical analysis showed only copper in the A-1 Bottom elutriate slightly elevated above the USEPA Salt Water maximum criterion with no dilution.

Toxicity was not observed to benthic organisms for the top layer sediments, but the bottom layer showed toxicity to an amphipod test organism. Suspended phase bioassays showed toxicity to mussel larvae which was at least partially due to elevated concentrations of ammonia in A-Top and A-Bottom elutriates. In any case, the toxicity was not enough to exceed the Limiting Permissible Concentration (LPC) for open water disposal or to prevent disposal in a landfill, given expected levels of dilution.

Since these sediments are intended to go to a confined fill area, no further testing was carried out to examine open-water eligibility.

#### Southwest Slip Dike and Basin Area

Sediments have recently been sampled and tested within the Southwest Slip area (KLI/ToxScan, 2002). Sediment cores were grouped into composite areas B, C, and D moving from east to west back into the Slip (see attached maps, Appendix B-1). Individual core chemistry was done on the cores (two layers, top and bottom except for area D). Further testing of elutriate extracts as well as for suspended phase and benthic phase bioassays was done on the composite samples as appropriate.

Generally, these sediments in the Southwest Slip are fairly heavily contaminated, probably associated with the former shipyard activities as well as the presence of a major storm water discharge channel that empties into the head of the Southwest Slip at the far western end. Most of the cores taken in the Slip had a distinctive smell of hydrocarbon contamination.

Contaminants present were elevated metals that included arsenic, cadmium, chromium, copper, lead, mercury, and nickel. Composite samples showed chromium values ranging from 85-180 mg/kg; copper up to 290 mg/kg (above ERM level); lead 150 to 500 mg/kg (above ERM); and mercury above 6.5 mg/kg (above ERM). Total DDTs in the composites ranged from low values up to 4525 ug/kg (above ERM). Total PCBs range up to 1100 ug/kg and PAHs range from modest values in a few composites up to 68,000 ug/kg for others. Individual core values show high variability but generally are consistent with the results of the composited samples, and thus show individual values greater than the above quoted levels. All levels of chemical contaminants are below Title 22 hazardous waste levels (exception, lead in one core).

Since only relatively small amounts of these Slip bottom samples need to be dredged, just to form the keys for the landfill dikes, large areas of these contaminated sediments will be capped in place in the presently planned landfills for development of the Southwest terminal. Thus the overall effect of this project will be to substantially reduce the amount of contaminated sediments in contact with the Port environment.

More details of the testing results follow below, organized according to the composite areas B, C, and D. See detailed map in Appendix B-1.

# Area B - Top and Bottom Samples, Retaining Dike for New Terminal Fill, Opposite GATX

Preliminary observation and odors (petroleum-like) during sampling and sample processing suggested that the level of contamination in cores B5 and B6 was markedly higher than in cores B1 through B4. Accordingly it was decided to prepare the B composite sample using only cores B1 through B4, and to combine cores B5 and B6 into the C composite sample.

For the B-Top Composite, ERL guidance levels were exceeded for arsenic, copper, lead, total DDTs, and total PAHs. ERM levels were exceeded for mercury, DDE, and total PCBs. A benthic bioassay (*Rhepoxynius* vs LA2 reference) showed toxicity, but the difference from the reference site was < 20% so the LPC was not exceeded. Analysis of clams and worms exposed to B-Top Composite sediment showed significant bioaccumulation of DDE, PCBs and PAHs by both species. Several metals also showed elevated tissue concentrations in one or both species. The relatively high levels of important contaminants in the sediment, together with the incidence and extent of bioaccumulation, indicate that B-Top Composite sediment is not suitable for open water disposal.

Elutriate chemistry results showed no exceedance of any water quality criteria. The suspended phase toxicity tests showed no toxicity to water column species. Thus from a water quality perspective of dredging and disposal operations, adverse impacts would not be expected from disposal operations, or from decant water from a confined landfill.

The B-Bottom Composite was judged to be suitable for ocean disposal and is discussed in a section below along with other materials suitable for ocean disposal.

# Area C - Top and Bottom Samples, Retaining Dikes for the Proposed New Fill Area.

Note again that the C-composite samples include material from core samples B-5 and B-6 as well as from core samples C-1 through C-9.

For the C-Top Composite, ERL guidance levels were exceeded for arsenic, cadmium, chromium, lead and zinc. ERM guidance levels were exceeded for copper, mercury, nickel, DDE, total DDTs, total PCBs and total PAHs as well as for several individual PAH compounds. The analysis of the individual cores produced data that were consistent with the composite chemistry results. Because of the very extensive chemical contamination, open water disposal was not considered for this sample, and no biological testing was done.

Cabrillo Shallow Water Extension (Figure 1). Data are also summarized for the area of the proposed Pier 400 Submerged Material Storage Site (Figure 1). Dredged material from the channel deepening program that has been determined to be suitable for ocean disposal would be placed in these two outer Harbor sites.

The 1991 environmental study was designed to identify regions within the potential dredge areas that contained high levels of chemical contaminants and/or significant toxicity to sensitive water column and benthic organisms. Of the 24 areas tested, four (Areas 16, 17, 20 and 21) overlapped geographic areas currently proposed for extension of the Cabrillo Shallow Water habitat (Areas 16 & 17) or for the proposed Pier 400 Submerged Materials Storage site (Areas 20 & 21). These original test areas are shown in Appendix C-2.

Three vibracore samples were collected in each Area and combined into three vertical composites as follows. Sediments in the 1-2 foot depth interval were combined into a "top" Area composite; sediments from the 3-5 foot depth interval were combined to form a "mid" Area composite. Sediments from the bottom 2 feet of each core were combined to form a "bottom" Area composite. Each composite was subjected to bulk sediment chemical analysis and to toxicity tests with larvae of the Pacific oyster (*Crassostrea gigas*) and with a benthic amphipod (*Grandidierella japonica*). Results of these sediment evaluations are briefly summarized as follows:

Sediments from Areas 16 and 17 (in the area of the proposed Cabrillo Shallow Water Habitat Extension) showed exceedences of ERL guidelines for several metals including arsenic, cadmium, chromium, copper, mercury, nickel and silver. The ERM for mercury was exceeded in the Area 16-mid and Area 17-mid and bottom sediments.

Sediment from all four areas showed DDTs in excess of the ERM value. The highest levels were in the top segments of Areas 17, 20 and 21.

Area 16 top and bottom sediments showed benzo(a)pyrene concentrations exceeding the ERL value, but there was overall low PAH contamination in these Areas.

Water column bioassays showed there was no significant decrease in survival or normal development of oyster larvae in elutriates of any of these 12 composites compared with dilution water controls. Likewise, benthic bioassays showed no significantly decreased survival or ability to rebury of amphipods, compared to performance in reference sediment.

These past data over the time period 1991-2001 suggest that sediment quality has not changed markedly over that ten-year interval. Metals and DDT pesticides were and remain somewhat elevated in the region. Sediments in these areas within the footprint of the extended habitat or of the submerged material storage area will be buried by the new materials from the deepening project, including a sand cap for the habitat.

For the C-Bottom Composite, ERL guidance levels were exceeded for arsenic, copper lead, DDE, total DDTs, total PCBs and total PAHs. The ERM level for mercury was also exceeded. A benthic bioassay test using *Ampelisca* showed statistically reduced survival when compared with LA3 reference sediment exposure, but the difference was < 20% and the LPC was not exceeded. Clams and worms were exposed for assessment of bioaccumulation potential, and tissues were frozen. However, these tissues were not analyzed as the design of the proposed Southwest fill was such that these sediments could be accommodated along with other contaminated sediments into this landfill, and segregation of this C-Bottom material was not practical. Therefore, further testing for open water disposal was not necessary.

Elutriate chemistry results showed no exceedance of any water quality criteria. Suspended phase bioassays were run only with the C-Bottom sample, which showed toxicity to mussel larvae; here again, the concentration of ammonia in the elutriate was sufficient to account for much of the observed toxicity. In any case, the toxicity was not enough to exceed the LPC for open water disposal or to prevent disposal in a landfill, given expected levels of dilution.

# Area D - The Extension of the Retaining Dike Back into the Slip, Requiring Very Shallow Dredging.

For the Area D composite, only one depth interval was sampled and tested since the dikes planned for this area would have very shallow keys. For the composite sample, ERL levels were exceeded for arsenic, cadmium, chromium, copper, mercury, zinc, and total PAHs. ERM levels were exceeded for lead, DDE, total DDTs, and total PCBs. The total DDT value for the composite was very high, exceeding the ERM by a factor of 100. Individual analyses of the nine cores in area D were consistent with the composite data, including one core with total DDTs exceeding the ERM by 1000x. Because of the very extensive chemical contamination by compounds of extreme ecological concern, open water disposal was not considered and no biological testing was performed on this composite sample.

Clamshell removal for dike key construction and disposal at the bottom of the Southwest landfill has been specified for this material because of the small footprint and precision cuts to be made. Because of the high lead values in the bulk sediment from individual cores in this area, clamshell removal for dike key construction adds an additional safety measure as it suspends the minimum sediment into the water column. These sediments will then be covered by the dike or by the fill later placed in the landfill.

Chemical analysis of standard elutriate prepared from this composite indicated that adverse impacts would not be expected from disposal operations, or from decant water from a confined landfill.

#### 3.2.2 Areas Suitable for Ocean Disposal

#### **Subarea B-Bottom**

For the B-Bottom Composite, sediment chemical analysis showed that only the ERL for mercury was exceeded, and elutriate chemistry results showed no exceedance of any water quality criteria.

Bioassay testing showed no toxicity to water column species, but significantly increased mortality was observed in a benthic bioassay (*Rhepoxynius* vs LA2 reference). The difference in survival between B-Bottom and LA2 amphipods was < 20% so the LPC was not exceeded.

Bioaccumulation tissue analyses showed small but statistically significant elevation of only a few metals and of no organic contaminants in clams or worms.

Clean sediment chemistry, no toxicity exceeding LPCs, and little bioaccumulation potential suggest that B-Bottom Composite sediment is suitable for open water disposal. However, because of the difficulties of handling this small amount of bottom material separately in a dredging operation, this bottom material will be disposed along with the contaminated upper layer B-Top in the Southwest Slip fill area.

The lack of chemical and toxicity effects produced by B-Bottom elutriate shows that, from a water quality perspective, adverse impacts would not be expected from disposal operations, or from decant water from a confined landfill.

#### 3.3 Outer Harbor

Recently, six surface grab samples were taken in the Outer Harbor in the area of the proposed extension to the Cabrillo Shallow Underwater Habitat (KLI/ToxScan, 2002). These were designated as Cabrillo Grab samples #1 through #6. Physical, and chemical, data were taken on the individual grab samples and chemical analysis was done on an elutriate prepared from the six-sample sediment composite The results are summarized briefly below and presented in Appendix C-1.

Sediment chemistry data showed that metals and organic contaminants exceeded ERL values (arsenic, cadmium, copper, lead, nickel, zinc, PAHs, and PCBs). Mercury, DDE, and Total DDTs exceeded ERM values. Elutriate chemical analysis showed that Cabrillo Composite elutriate slightly exceeded the USEPA salt water maximum water quality criterion for copper with no dilution. This area will be buried by fill placed within the Cabrillo Shallow Water Habitat Extension.

Previously, sediment data were taken in the Outer Harbor area (KLI, 1991) prior to the design and development of the Pier 400 project. Extensive outer Harbor channel dredging and the Pier 400 fill have been completed since this time in adjacent areas. Appendix C-2 presents a summary of this previous data in the area of the proposed

# 4.0 SUMMARY OF REUSE/DISPOSAL SUITABILITIES

#### 4.0 SUMMARY OF REUSE/DISPOSAL SUITABILITIES

Based upon criteria in the ocean disposal (USEPA/USACE, 1991) and inland discharge (USEPA/USACE, 1998) testing manuals, potential reuse/disposal options for the sediments involved in the Channel Deepening Project are summarized in Table 1.

This summary table can be used as a guide to further interpretation of the sediment quality data, and for planning sediment management that must include the materials both suitable and unsuitable for ocean disposal.

Table 1. Dredge Sediment Properties: Port of Los Angeles - Channel Deepening Project.

|                                         |            | Depth<br>Intervals | Material Properties               |           | Environmental      |                 |                 |                 |     |         |           |                                                                     |
|-----------------------------------------|------------|--------------------|-----------------------------------|-----------|--------------------|-----------------|-----------------|-----------------|-----|---------|-----------|---------------------------------------------------------------------|
| Dredge Material                         |            |                    | Composite Grain Size <sup>1</sup> |           | Unconfined Aquatic |                 | Fill            | Upland          |     |         |           |                                                                     |
| Unit                                    | Reference  | Elevations         | % Sand                            | % Silt    | % Clay             | LA2             | LA3             | In Bay          | CAD | Class 1 | Class 2,3 | Comments                                                            |
| CG-1                                    | KLI, 1996  | -46 to -60         | 79-93                             | 5-14      | 2-7                | Yes             | Yes             | Yes             | Yes | NA      | Yes       | DDE and DDTs > ERL                                                  |
| CG 2                                    | KLI, 1997a | '-44.5 to -65      | 80-90                             | 4-11      | 1-9                | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, Hg, PCBs > ERL; DDT & DDE > ERM                                 |
| CG 3                                    | KLI, 1997a | -43.2 to -65       | 56 - 91                           | 5 - 25    | 3 - 19             | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, Hg, Ni, PAH, HPAH & DDT > ERL; DDE & PCBs > ERM                 |
| CG 4                                    | KLI, 1997a | -42.5 to -65       | 78 - 91                           | 6 - 15    | 3 - 9              | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Hg,Ni, DDE, DDT & PCBs > ERL                                        |
| FG 1                                    | KLI, 1997a | -45 to -52         | 37 - 49                           | 30 - 35   | 21 - 25            | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, Hg, Ni, DDTs & PCBs > ERL; DDEs > ERM                           |
| FG 2                                    | KLI, 1997a | -46.1 to -52       | 29* - 56                          | 28 - 43*  | 16 - 28*           | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, Hg, Ni, DDE, DDT & PCBs > ERL                                   |
| FG 2-B (2-6 and 2-8)                    | KLI, 1997a | -44.3 to -52*      | 45*                               | 35*       | 10*                | No              | No              | No              | Yes | NA      | Yes       | Hg, Ni, DDE & DDT > ERL; PCBs > ERM (all values*)                   |
| FG 3                                    | KLI, 1997a | -44.2 to -52       | 31- 38                            | 42 - 48   | 19 - 21            | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, Pb, Hg & Ni > ERL;<br>DDE, DDT & PCBs > ERM                     |
| FM 1 (A 1-1, 1-3 & B 1-8, 1-10)         | KLI, 1997a | -47.3 to -52*      | 11* - 46*                         | 30* - 50* | 25* - 39*          | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cd, Cr, Cu, Zn, DDE, DDT & PCBs > ERL; Ni > ERM (all values*)       |
| FM 1(A 1-2, 1-4, 1-5 & B 1-6, 1-7, 1-9) | KLI, 1997a | -42.4 to -52*      | 16* - 18*                         | 44* - 50* | 37* - 38*          | No              | No              | No              | Yes | NA      | Yes       | Cd, Cr, Cu, Hg, Pb & Zn > ERL;<br>Ni, DDE, DDT & PCBs (all values*) |
| FG 2-6 & 2-8                            | MEC, 2001  | -52 to -55         | 78                                | 16        | 6                  | No              | No              | No              | Yes | NA      | Yes       | PCBs > ERL                                                          |
| Pilot Station                           | MEC, 2001  | to -37             | 69-74                             | 18-24     | 6.8-7.4            | Yes             | Yes             | Yes             | Yes | NA      | Yes       | Cu, DDE, DDT & PCBs > ERL                                           |
| SWS A1-Top                              | KLI, 2001  | -44.8 to -50.3     | 67                                | 21        | 12.5               | No <sup>2</sup> | No <sup>2</sup> | No <sup>2</sup> | Yes | NA      | Yes       | DDTs and PCBs > ERL                                                 |
| SWS A1-Bottom                           | KLI, 2001  | -50.3 to -61.0     | 16                                | 55        | 31                 | No <sup>2</sup> | No <sup>2</sup> | No <sup>2</sup> | Yes | NA      | Yes       | Rhepoxynius toxicity > LPC;<br>As > ERL                             |
| SWS B-Top                               | KLI, 2001  | -32.3 to - 48.0    | 49                                | 31        | 20                 | No              | No              | No              | Yes | NA      | Yes       | As, Cu, Pb, DDTs, PAHs > ERL;<br>PCBs = ERM                         |
| SWS B-Bottom                            | KLI, 2001  | -37.3 to - 55.0    | 40                                | 38        | 22                 | Yes             | Yes             | Yes             | Yes | NA      | Yes       | All OK                                                              |
| SWS C-Top                               | KLI, 2001  | -19.8 to - 48.5    | 37                                | 35        | 27                 | No <sup>2</sup> | No <sup>2</sup> | No <sup>2</sup> | Yes | NA      | Yes       | As, Cd, Cr, Pb, Zn > ERL;<br>Cu, Hg, Ni, DDTs, PCBs, PAHs > ERM     |
| SWS C-Bottom                            | KLI, 2001  | -27.2 to -54.5     | 21                                | 52        | 27                 | No <sup>2</sup> | No <sup>2</sup> | No <sup>2</sup> | Yes | NA      | Yes       | As, Cu, Pb, DDTs, PCBs, PAHs > ERL;<br>Hg > ERM                     |
| SWS D                                   | KLI, 2001  | -1.25 to - 54.75   | 44                                | 34        | 22                 | No <sup>2</sup> | No <sup>2</sup> | No <sup>2</sup> | Yes | Yes     | Yes       | As, Cd, Cu, Hg, Ni, Zn, PAHs >ERL;<br>DDTs, PCBs, Pb > ERM          |

<sup>&</sup>lt;sup>1</sup> Percentages listed are a range from all subareas and vertical strata associated with the main dredge unit.

Revision Date: 19 Jan 02

Revised By: ST

<sup>&</sup>lt;sup>2</sup> Testing for open water eligibility not done \* Mathematical composite



#### 5.0 REFERENCES CITED

KLI (Kinnetic Laboratories, Inc.). 1991. POLA 2020 Plan Geotechnical Investigation, Environmental Tasks. Prepared for the Port of Los Angeles, San Pedro, CA.

KLI/ToxScan (Kinnetic Laboratories/ToxScan, Inc.). 1996. Chemical Analysis and Toxicity Evaluation of Sediments, Pier 400 Deep Navigation Project Borrow Project. Prepared for Port of Los Angeles, San Pedro, CA.

\_\_\_\_\_. 1997. Environmental Evaluation of Sediments for the Channel Deepening Program, Port of Los Angeles. Prepared for Fugro West, Inc., Ventura, CA. and Los Angeles Harbor Department, San Pedro, CA.

\_\_\_\_\_. 2002. Dredged Material Sampling and Analysis, Southwest Basin Development Project, Port of Los Angeles. Prepared for Port of Los Angeles, San Pedro, CA.

Long, E.R., D.D. MacDonald, S.L. Smith, and F.D. Calder. 1995. Incidence of Adverse Biological effects Within the Ranges of Chemical concentrations in Marine and Estuarine Sediments. Environmental Management, Vol. 19: 81-97.

MEC (MEC Analytical Systems, Inc.). 2001a. Results of Physical, Chemical, and Bioassay Testing of Sediments Collected for the Port of Los Angeles Modified Channel Deepening Program. Prepared for the Port of Los Angeles, Environmental Management Division, San Pedro, CA.

\_\_\_\_\_\_. 2001b. Berth 100 Wharf Construction and shoreline Improvement - Sediment Characterization Study, Port of Los Angeles Final Report. Prepared for the Port of Los Angeles, Environmental Management Division, San Pedro, CA.

USACE (U.S. Army Corps of Engineers, Los Angeles District). 2000. Port of Los Angeles Channel Deepening Project. Feasibility Study, Main Report and Appendices. November. State Clearinghouse No 99091209. ADP No. 990809-102.

USEPA (U.S. Environmental Protection Agency). 1998a. Memorandum: Port of Los Angeles, Channel Deepening Program (Main Channel). From Steve John, U. S. Environmental Protection Agency, Region IX. May 1, 1998.

\_\_\_\_\_. 1998b. Memorandum: Port of Los Angeles, Channel Deepening Program (Main Channel). From Steve John, U. S. Environmental Protection Agency, Region IX. May 14, 1998 (Amendment).

USEPA/USACE (U.S. Environmental Protection Agency/ U.S. Army Corps of Engineers). 1991. Evaluation of Dredged Material Proposed for Ocean Disposal (Testing Manual), USEPA Office of Marine and Estuaries Protection, and Department of the Army, USACE. Washington D.C. USEPA-503/8-91/001.

 $\underline{\hspace{1cm}}$  . 1998. Evaluation of Dredged Material Proposed for Discharge in Waters of the U.S. - Testing Manual. USEPA-823-B-98-004.



## **APPENDIX A-1**

# CHEMICAL ANALYSIS AND TOXICITY EVALUATION OF SEDIMENTS, PIER 400 DEEP NAVIGATION PROJECT BORROW PROJECT (Kinnetic Laboratories/ToxScan, 1996)

# ENVIRONMENTAL EVALUATION OF SEDIMENTS FOR THE CHANNEL DEEPENING PROGRAM, PORT OF LOS ANGELES (Kinnetic Laboratories/ToxScan, 1997)



Figure 1. Vibracore Locations for the Port of Los Angeles, Pier 400 Borrow Project.



Figure 2. Vibracore Sampling Locations for the Port of Los Angeles Channel Deepening Program (Northern Extent of the Inner Harbor), April 1997.



<u>Figure 3</u>. Vibracore Sampling Locations for the Port of Los Angeles Channel Deepening Program (Southern Extent of the Inner Harbor), April 1997.

Table 1. Core Locations: Borrow - 1996 / Channel Deepening - 1997(Kinnetic Laboratories/ToxScan 1996; 1997)

## **BORROW - 1996 / CHANNEL DEEPENING - 1997**

| Core ID       | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|---------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
| BORROW - 1996 | (ITAD 00)            | (IIAD 00)             | (100t III.LLTT)                      | (1001)                        | (1001)                         | (IOOT III.EETT)                     |
| Subunit CG-1A |                      |                       |                                      |                               |                                |                                     |
| VA-1          | 33° 43.7460'         | 118° 16.3290'         | -46.9                                | 8.0                           | 0.0 to 5.1                     | -46.9 to -52.0                      |
| V/( 1         | 00 40.7400           | 110 10.0200           | 40.0                                 | 0.0                           | 5.1-7.0                        | -52.0 to -54.9                      |
| VA-2          | 33° 43.7610'         | 118° 16.3686'         | -47.6                                | 17.5                          | 0.0 to 4.5                     | -47.6 to -52.0                      |
|               | 00 1011010           |                       |                                      |                               | 4.5 to 12.5                    | -52.0 to -60.0                      |
| VA-3          | 33° 43.8431'         | 118° 16.4202'         | -48.0                                | 12.0                          | 0.0 to 4.0                     | -48.0 to -52.0                      |
|               |                      |                       |                                      |                               | 4.0 to 12.0                    | -52.0 to -60.0                      |
| VA-4          | 33° 43.9212'         | 118° 16.3841'         | -48.0                                | 15.5                          | 0.0 to 4.0                     | -48.0 to -52.0                      |
|               |                      |                       |                                      |                               | 4.0 to 12.0                    | -52.0 to -60.0                      |
| VA-5          | 33° 43.9373'         | 118° 16.4913'         | -45.5                                | 15.0                          | 0.0 to 6.5                     | -45.5 to -52.0                      |
|               |                      |                       |                                      |                               | 6.5 to 14.5                    | -52.0 to -60.0                      |
| Subunit CG-1B |                      |                       |                                      |                               |                                |                                     |
| VA-6          | 33° 44.0400'         | 118° 16.4664'         | -47.0                                | 17.5                          | 0.0 to 5.0                     | -47.0 to -52.0                      |
|               |                      |                       |                                      |                               | 5.0 to 13.0                    | -52.0 to -60.0                      |
| VA-7          | 33° 44.0624'         | 118° 16.5488'         | -47.4                                | 19.0                          | 0.0 to 4.6                     | -47.4 to -52.0                      |
|               |                      |                       |                                      |                               | 4.6 to 12.6                    | -52.0 to -60.0                      |
| VA-8          | 33° 44.1175'         | 118° 16.4703'         | -46.25                               | 18.5                          | 0.0 to 5.75                    | -46.25 to -52.0                     |
|               |                      |                       |                                      |                               | 5.75 to 13.75                  | -52.0 to -60.0                      |
| VA-9          | 33° 44.2227'         | 118° 16.5369'         | -48.0                                | 18.0                          | 0.0 to 4.0                     | -48.0 to -52.0                      |
|               |                      |                       |                                      |                               | 4.0 to 12.0                    | -52.0 to -60.0                      |
| VA-10         | 33° 44.2764'         | 118° 16.6297'         | -46.8                                | 19.0                          | 0.0 to 5.2                     | -46.8 to -52.0                      |
|               |                      |                       |                                      |                               | 5.2 to 13.2                    | -52.0 to -60.0                      |
| CHANNEL DEEP  | ENING - 1997         |                       |                                      |                               |                                |                                     |
| Subunit CG-2A |                      |                       |                                      |                               |                                |                                     |
| CG2-1         | 33° 44.3508'         | 118° 16.6442'         | -45.7                                | 18.7                          | 0.0 to 6.3                     | -45.7 to -52                        |
|               |                      |                       |                                      |                               | 6.3 to 18.7                    | -52 to -64.4                        |
| CG2-2         | 33° 44.4030'         | 118° 16.6361'         | -46.2                                | 19.6                          | 0.0 to 5.8                     | -46.2 to -52                        |
|               |                      |                       |                                      |                               | 5.8 to 18.8                    | -52 to -65                          |
| CG2-3         | 33° 44.5104'         | 118° 16.6193'         | -44.5                                | 18.2                          | 0.0 to 7.5                     | -44.5 to -52                        |
|               |                      |                       |                                      |                               | 7.5 to 18.2                    | -52 to -62.7                        |
| CG2-4         | 33° 44.5972'         | 118° 16.5918'         | -45.2                                | 20                            | 0.0 to 6.8                     | -45.2 to -52                        |
|               |                      |                       |                                      |                               | 6.8 to 19.8                    | -52 to -65                          |
| CG2-5         | 33° 44.6808'         | 118° 16.5379'         | -45.2                                | 19                            | 0.0 to 6.8                     | -45.2 to -52                        |
|               |                      |                       |                                      |                               | 6.8 to 19.0                    | -52 to -64.2                        |
| Subunit CG-2B |                      |                       |                                      |                               |                                |                                     |
| CG2-6         | 33° 44.3684'         | 118° 16.5192'         | -50.4                                | 14.8                          | 0.0 to 1.6                     | -50.4 to -52                        |
|               |                      |                       |                                      |                               | 1.6 to 14.6                    | -52 to -65                          |
| CG2-7         | 33° 44.4161'         | 118° 16.5096'         | -44.3                                | 18.5                          | 0.0 to 7.7                     | -44.3 to -52                        |
|               |                      |                       |                                      |                               | 7.7 to 18.5                    | -52 to -62.8                        |
| CG2-8         | 33° 44.5438'         | 118° 16.4553'         | -50.0                                | 19.7                          | 0.0 to 2.0                     | -50.0 to -52                        |
|               |                      |                       |                                      |                               | 2.0 to 15.0                    | -52 to -65                          |
| CG2-9         | 33° 44.6554'         | 118° 16.3842'         | -49.1                                | 15.5                          | 0.0 to 2.9                     | -49.1 to -52                        |
|               | 0                    | 0 .                   |                                      |                               | 2.9 to 15.5                    | -52 to -64.6                        |
| CG2-10        | 33° 44.7131'         | 118° 16.4063'         | -49.7                                | 19.2                          | 0.0 to 2.3                     | -49.7 to -52                        |

Table 1. Core Locations: Borrow - 1996 / Channel Deepening - 1997(Kinnetic Laboratories/ToxScan 1996; 1997)

| Core ID                | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|------------------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
|                        |                      |                       |                                      |                               | 2.3 to 15.3                    | -52 to -65                          |
| Subunit CG-2C          |                      |                       |                                      |                               |                                |                                     |
| CG2-11                 | 33° 44.4475'         | 118° 16.5798'         | -57.7                                | 19.8                          | 0.0 to 7.3                     | -57.7 to -65                        |
| CG2-12                 | 33° 44.5017'         | 118° 16.5059'         | -55.8                                | 19                            | 0.0 to 9.2                     | -55.8 to -65                        |
| CG2-13                 | 33° 44.6102'         | 118° 16.5235'         | -56.1                                | 18.5                          | 0.0 to 8.9                     | -56.1 to -65                        |
| CG2-14                 | 33° 44.6385'         | 118° 16.4499'         | -56.1                                | 16.5                          | 0.0 to 8.9                     | -56.1 to -65                        |
| Subunit CG-3A          |                      |                       |                                      |                               |                                |                                     |
| CG3-1                  | 33° 45.6627'         | 118° 16.5083'         | -49.2                                | 17.8                          | 0.0 to 2.8<br>2.8 to 15.8      | -49.2 to -52<br>-52 to -65          |
| CG3-2                  | 33° 45.6771'         | 118° 16.4249'         | -44.2                                | 19.8                          | 0.0 to 7.8                     | -44.2 to -52                        |
|                        |                      |                       |                                      |                               | 7.8 to 19.8                    | -52 to -64                          |
| CG3-3                  | 33° 45.7385'         | 118° 16.4699'         | -47.9                                | 19.5                          | 0.0 to 4.1<br>4.1 to 17.1      | -47.9 to -52<br>-52 to -65          |
| CG3-4                  | 33° 45.7934'         | 118° 16.5609'         | -47.2                                | 11.2                          | 0.0 to 4.8                     | -47.2 to -52                        |
|                        |                      |                       |                                      |                               | 4.8 to 11.2                    | -52 to -58.4                        |
| CG3-5                  | 33° 45.7961'         | 118° 16.3649'         | -43.2                                | 19.7                          | 0.0 to 8.8                     | -43.2 to -52                        |
|                        |                      |                       |                                      |                               | 8.8 to 19.7                    | -52 to -62.9                        |
| Subunit CG-3B          |                      |                       |                                      |                               |                                |                                     |
| CG3-6                  | 33° 45.8536'         | 118° 16.5894'         | -47.7                                | 18                            | 0.0 to 4.3                     | -47.7 to -52                        |
|                        |                      |                       |                                      |                               | 4.3 to 17.3                    | -52 to -65                          |
| CG3-7                  | 33° 45.8739'         | 118° 16.3545'         | -44.1                                | 15                            | 0.0 to 7.9                     | -44.1 to -52                        |
|                        |                      |                       |                                      |                               | 7.9 to 15                      | -52 to -59.1                        |
| CG3-8                  | 33° 45.9386'         | 118° 16.5896'         | -41.4                                | 16                            | 0.0 to 10.6                    | -41.4 to -52                        |
|                        |                      |                       |                                      |                               | 10.6 to 16                     | -52 to 57.4                         |
| CG3-9                  | 33° 45.9482'         | 118° 16.4702'         | -44.5                                | 17.7                          | 0.0 to 7.5                     | -44.5 to -52                        |
|                        |                      |                       |                                      |                               | 7.5 to 17.7                    | -52 to -62.2                        |
| CG3-10                 | 33° 45.9377'         | 118° 16.3357          | -44.3                                | 20                            | 0.0 to 7.7                     | -44.3 to -52                        |
|                        |                      |                       |                                      |                               | 7.7 to 20                      | -52 to -64.3                        |
| Subunit CG-3C          |                      |                       |                                      |                               |                                |                                     |
| CG3-11                 | 33° 45.8314'         | 118° 16.4015'         | -59.0                                | 12.2                          | 0.0 to 6.0                     | -59.0 to -65                        |
| CG3-12                 | 33° 45.8472'         | 118° 16.5153'         | -51.0                                | 17.5                          | 0.0 to 14.0                    | -51.0 to -65                        |
| CG3-13                 | 33° 45.8835'         | 118° 16.4907'         | -50.8                                | 19.5                          | 0.0 to 14.2                    | -50.8 to -65                        |
| Subunit CG-4A          |                      |                       |                                      |                               |                                |                                     |
| CG4-1                  | 33° 45.0293'         | 118° 16.1724'         | -47.2                                | 19.7                          | 0.0 to 4.8                     | -47.2 to -52                        |
|                        |                      |                       |                                      |                               | 4.8 to 17.8                    | -52 to -65                          |
| CG4-2                  | 33° 45.0620'         | 118° 16.0479'         | -46.6                                | 18                            | 0.0 to 5.4                     | -46.6 to -52                        |
|                        |                      |                       |                                      |                               | 5.4 to 18                      | -52 to -64.6                        |
| CG4-3                  | 33° 45.1455'         | 118° 16.0824'         | -44.0                                | 20                            | 0.0 to 8.0                     | -44.0 to -52                        |
|                        |                      |                       |                                      |                               | 8.0 to 20.0                    | -52 to -64                          |
| CG4-4                  | 33° 45.1930'         | 118° 16.1778'         | -43.2                                | 20                            | 0.0 to 8.8                     | -43.2 to -52                        |
|                        |                      |                       |                                      |                               | 8.8 to 20.0                    | -52 to -63.2                        |
| CG4-5                  | 33° 45.2028'         | 118° 16.2806'         | -42.5                                | 20                            | 0.0 to 9.5                     | -42.5 to -52                        |
|                        |                      |                       |                                      |                               | 9.5 to 20                      | -52 to -62.5                        |
| Subunit CG-4B<br>CG4-6 | 33° 45.1078'         | 118° 16.0057'         | -45.1                                | 19.5                          | 0.0 to 6.9                     | -45.1 to -52                        |
| 55.5                   | 00 10.1070           | 10.0001               | 70.1                                 | 10.0                          | 3.0 10 0.0                     | 10.1 10 -02                         |

Table 1. Core Locations: Borrow - 1996 / Channel Deepening - 1997(Kinnetic Laboratories/ToxScan 1996; 1997)

| Core ID       | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|---------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
|               |                      |                       |                                      |                               | 6.9 to 19.5                    | -52 to -64.6                        |
| CG4-7         | 33° 45.1921'         | 118° 15.9594'         | -46.8                                | 18                            | 0.0 to 5.2                     | -46.8 to -52                        |
|               |                      |                       |                                      |                               | 5.2 to 18.0                    | -52 to -64.8                        |
| CG4-8         | 33° 45.2093'         | 118° 15.8839'         | -44.0                                | 19                            | 0.0 to 8.0                     | -44.0 to -52                        |
|               |                      |                       |                                      |                               | 8.0 to 19.0                    | -52 to -63                          |
| CG4-9         | 33° 45.2615'         | 118° 15.8870'         | -45.5                                | 20                            | 0.0 to 6.5                     | -45.5 to -52                        |
|               |                      |                       |                                      |                               | 6.5 to 19.5                    | -52 to -65                          |
| CG4-10        | 33° 45.3080'         | 118° 15.7665'         | -45.3                                | 18                            | 0.0 to 6.7                     | -45.3 to -52                        |
|               |                      |                       |                                      |                               | 6.7 to 18                      | -52 to -63.3                        |
| Subunit FG1-A |                      |                       |                                      |                               |                                |                                     |
| FG1-1 (1)     | 33° 44.7422'         | 118° 16.3536'         | -47.7                                | 6                             | 0.0 to 4.3                     | -47.7 to -52                        |
| FG1-1 (2)     | 33° 44.7444'         | 118° 16.3584'         | -47.7                                | 5.1                           | 0.0 to 4.3                     | -47.7 to -52                        |
| FG1-2 (1)     | 33° 44.8277'         | 118° 16.4590'         | -49.1                                | 3.4                           | 0.0 to 2.9                     | -49.1 to -52                        |
| FG1-2 (2)     | 33° 44.8274'         | 118° 16.4585'         | -49.0                                | 3.7                           | 0.0 to 3.0                     | -49.0 to -52                        |
| FG1-3 (1)     | 33° 44.8426'         | 118° 16.3633'         | -49.4                                | 4.4                           | 0.0 to 2.6                     | -49.4 to -52                        |
| FG1-3 (2)     | 33° 44.8399'         | 118° 16.3625'         | -49.4                                | 4.7                           | 0.0 to 2.6                     | -49.4 to -52                        |
| FG1-4 (1)     | 33° 44.8731'         | 118° 16.2577'         | -46.8                                | 6.2                           | 0.0 to 5.2                     | -46.8 to -52                        |
| FG1-4 (2)     | 33° 44.8722'         | 118° 16.2578'         | -46.9                                | 6.9                           | 0.0 to 5.1                     | -46.9 to -52                        |
| FG1-5 (1)     | 33° 44.9594'         | 118° 16.3909'         | -45.1                                | 9.2                           | 0.0 to 6.9                     | -45.1 to -52                        |
| FG1-5 (2)     | 33° 44.9600'         | 118° 16.3904'         | -45.0                                | 7.9                           | 0.0 to 7.0                     | -45.0 to -52                        |
| Subunit FG1-B |                      |                       |                                      |                               |                                |                                     |
| FG1-6 (1)     | 33° 44.9452'         | 118° 16.1918'         | -45.8                                | 8                             | 0.0 to 6.2                     | -45.8 to -52                        |
| FG1-6 (2)     | 33° 44.9447'         | 118° 16.1926'         | -45.8                                | 7.7                           | 0.0 to 6.2                     | -45.8 to -52                        |
| FG1-7 (1)     | 33° 45.0065'         | 118° 16.2155'         | -48.7                                | 3.7                           | 0.0 to 3.3                     | -48.7 to -52                        |
| FG1-7 (2)     | 33° 45.0056'         | 118° 16.2148'         | -48.8                                | 4                             | 0.0 to 3.2                     | -48.8 to -52                        |
| FG1-8 (1)     | 33° 45.0664'         | 118° 16.3804'         | -45.7                                | 10.1                          | 0.0 to 6.3                     | -45.7 to -52                        |
| FG1-8 (2)     | 33° 45.0662'         | 118° 16.3804'         | -45.4                                | 7.5                           | 0.0 to 6.6                     | -45.4 to -52                        |
| FG1-9 (1)     | 33° 45.0822'         | 118° 16.2861'         | -49.3                                | 3.5                           | 0.0 to 2.7                     | -49.3 to -52                        |
| FG1-9 (2)     | 33° 45.0830'         | 118° 16.2867'         | -49.4                                | 2.5                           | 0.0 to 2.6                     | -49.4 to -52                        |
| FG1-10 (1)    | 33° 45.1956'         | 118° 16.3529'         | -50.2                                | 2.5                           | 0.0 to 1.7                     | -50.2 to -51.9                      |
| FG1-10 (2)    | 33° 45.1957'         | 118° 16.3535'         | -50.3                                | 2.4                           | 0.0 to 1.7                     | -50.3 to -52                        |
| Subunit FG2-A |                      |                       |                                      |                               |                                |                                     |
| FG2-1 (1)     | 33° 45.2493'         | 118° 16.4835'         | -47.6                                | 6.7                           | 0.0 to 4.4                     | -47.6 to -52                        |
| FG2-1 (2)     | 33° 45.2480'         | 118° 16.4833'         | -47.5                                | 5.5                           | 0.0 to 4.5                     | -47.5 to -52                        |
| FG2-2 (1)     | 33° 45.3268'         | 118° 16.4387'         | -47.3                                | 6.7                           | 0.0 to 4.7                     | -47.3 to -52                        |
| FG2-2 (2)     | 33° 45.3199'         | 118° 16.4329'         | -47.1                                | 6.1                           | 0.0 to 4.9                     | -47.1 to -52                        |
| FG2-3 (1)     | 33° 45.3187'         | 118° 16.4989'         | -49.6                                | 2.5                           | 0.0 to 2.4                     | -49.6 to -52                        |
| FG2-3 (2)     | 33° 45.3190'         | 118° 16.4995'         | -49.5                                | 3                             | 0.0 to 2.5                     | -49.5 to -52                        |
| FG2-4 (1)     | 33° 45.3609'         | 118° 16.6276'         | -46.4                                | 4.7                           | 0.0 to 4.7                     | -46.4 to -51.1                      |
| FG2-4 (2)     | 33° 45.3592'         | 118° 16.6294'         | -46.4                                | 4.5                           | 0.0 to 4.5                     | -46.4 to -50.9                      |
| FG2-5 (1)     | 33° 45.3994'         | 118° 16.5518'         | -48.6                                | 4.5                           | 0.0 to 3.4                     | -48.6 to -52                        |
| FG2-5 (2)     | 33° 45.4012'         | 118° 16.5525'         | -48.7                                | 4                             | 0.0 to 3.3                     | -48.7 to -52                        |
| Subunit FG2-B |                      |                       |                                      |                               |                                |                                     |
| FG2-6 (1)     | 33° 45.4369'         | 118° 16.6454'         | -44.8                                | 8.5                           | 0.0 to 7.2                     | -44.8 to -52                        |
| FG2-6 (2)     | 33° 45.4349'         | 118° 16.6378'         | -44.3                                | 7.2                           | 0.0 to 7.2                     | -44.3 to -51.5                      |

Table 1. Core Locations: Borrow - 1996 / Channel Deepening - 1997(Kinnetic Laboratories/ToxScan 1996; 1997)

| Core ID       | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|---------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
| FG2-7 (1)     | 33° 45.4501'         | 118° 16.5156'         | -46.6                                | 6                             | 0.0 to 5.4                     | -46.6 to -52                        |
| FG2-7 (2)     | 33° 45.4503'         | 118° 16.5160'         | -47.0                                | 5.2                           | 0.0 to 5.0                     | -47.0 to -52                        |
| FG2-8 (1)     | 33° 45.5232'         | 118° 16.5721'         | -47.5                                | 2.5                           | 0.0 to 2.5                     | -47.5 to -50                        |
| FG2-8 (2)     | 33° 45.5248'         | 118° 16.5694'         | -47.2                                | 3                             | 0.0 to 3.0                     | -47.2 to -50.2                      |
| FG2-9 (1)     | 33° 45.5470'         | 118° 16.4370'         | -47.8                                | 4.0                           | 0.0 to 4.0                     | -47.8 to -51.8                      |
| FG2-9 (2)     | 33° 45.5470'         | 118° 16.4370'         | -47.6                                | 6.5                           | 0.0 to 4.4                     | -47.6 to -52                        |
| FG2-10 (1)    | 33° 45.6334'         | 118° 16.4909'         | -49.7                                | 6                             | 0.0 to 2.3                     | -49.7 to -52                        |
| FG2-10 (2)    | 33° 45.6326'         | 118° 16.4915'         | -49.8                                | 5.2                           | 0.0 to 2.2                     | -49.8 to -52                        |
| Subunit FG3-A |                      |                       |                                      | -                             |                                |                                     |
| FG3-1 (1)     | 33° 45.3911'         | 118° 15.7898'         | -47.3                                | 6.5                           | 0.0 to 4.7                     | -47.3 to -52                        |
| FG3-1 (2)     | 33° 45.3922'         | 118° 15.7897'         | -47.4                                | 6.4                           | 0.0 to 4.6                     | -47.4 to -52                        |
| FG3-2 (1)     | 33° 45.3792'         | 118° 15.6896'         | -46.7                                | 6.1                           | 0.0 to 5.3                     | -46.7 to -52                        |
| FG3-2 (2)     | 33° 45.3796'         | 118° 15.6902'         | -46.9                                | 6.1                           | 0.0 to 5.1                     | -46.9 to -52                        |
| FG3-3 (1)     | 33° 45.4635'         | 118° 15.7114'         | -47.6                                | 6.5                           | 0.0 to 4.4                     | -47.6 to -52                        |
| FG3-3 (2)     | 33° 45.4645'         | 118° 15.7170'         | -47.6                                | 6.5                           | 0.0 to 4.4                     | -47.6 to -52                        |
| FG3-4 (1)     | 33° 45.5270'         | 118° 15.5592'         | -46.9                                | 7                             | 0.0 to 5.1                     | -46.9 to -52                        |
| FG3-4 (2)     | 33° 45.5289'         | 118° 15.5571'         | -46.8                                | 6.1                           | 0.0 to 5.2                     | -46.8 to -52                        |
| FG3-5 (1)     | 33° 45.6033'         | 118° 15.5800'         | -49.3                                | 4                             | 0.0 to 2.7                     | -49.3 to -52                        |
| FG3-5 (2)     | 33° 45.6046'         | 118° 15.5806'         | -49.3                                | 3.2                           | 0.0 to 2.7                     | -49.3 to -52                        |
| Subunit FG3-B |                      |                       |                                      |                               |                                |                                     |
| FG3-6 (1)     | 33° 45.6107'         | 118° 15.4536'         | -47.0                                | 7.4                           | 0.0 to 5.0                     | -47.0 to -52                        |
| FG3-6 (2)     | 33° 45.6100'         | 118° 15.4547'         | -47.0                                | 7.4                           | 0.0 to 5.0                     | -47.0 to -52                        |
| FG3-7 (1)     | 33° 45.7071'         | 118° 15.4683'         | -44.2                                | 10.2                          | 0.0 to 7.8                     | -44.2 to -52                        |
| FG3-7 (2)     | 33° 45.7070'         | 118° 15.4680'         | -44.2                                | 9.2                           | 0.0 to 7.8                     | -44.2 to -52                        |
| FG3-8 (1)     | 33° 45.7149'         | 118° 15.3747'         | -47.5                                | 6.5                           | 0.0 to 4.5                     | -47.5 to -52                        |
| FG3-8 (2)     | 33° 45.7155'         | 118° 15.3750'         | -47.5                                | 6                             | 0.0 to 4.5                     | -47.5 to -52                        |
| FG3-9 (1)     | 33° 45.6954'         | 118° 15.2510'         | -47.6                                | 6.9                           | 0.0 to 4.4                     | -47.6 to -52                        |
| FG3-9 (2)     | 33° 45.6958'         | 118° 15.2509'         | -47.4                                | 6.7                           | 0.0 to 4.6                     | -47.4 to -52                        |
| FG3-10 (1)    | 33° 45.8166'         | 118° 15.3581'         | -47.4                                | 6.2                           | 0.0 to 4.6                     | -47.4 to -52                        |
| FG3-10 (2)    | 33° 45.8169'         | 118° 15.3565'         | -47.3                                | 7                             | 0.0 to 4.7                     | -47.3 to -52                        |
| Subunit FG3-C |                      |                       |                                      |                               |                                |                                     |
| FG3-11 (1)    | 33° 45.8912'         | 118° 15.2723'         | -45.0                                | 7.5                           | 0.0 to 7.0                     | -45.0 to -52                        |
| FG3-11 (2)    | 33° 45.8905'         | 118° 15.2719'         | -44.9                                | 7                             | 0.0 to 7.0                     | -44.9 to -51.9                      |
| FG3-12 (1)    | 33° 45.7924'         | 118° 15.1798'         | -46.0                                | 7.2                           | 0.0 to 6.0                     | -46.0 to -52                        |
| FG3-12 (2)    | 33° 45.7916'         | 118° 15.1798'         | -46.0                                | 7.7                           | 0.0 to 6.0                     | -46.0 to -52                        |
| FG3-13 (1)    | 33° 45.7405'         | 118° 15.1432'         | -47.3                                | 7                             | 0.0 to 4.7                     | -47.3 to -52                        |
| FG3-13 (2)    | 33° 45.7402'         | 118° 15.1446'         | -47.3                                | 7.5                           | 0.0 to 4.7                     | -47.3 to -52                        |
| FG3-14 (1)    | 33° 45.7904'         | 118° 14.9980'         | -46.3                                | 5.5                           | 0.0 to 5.5                     | -46.3 to -51.8                      |
| FG3-14 (2)    | 33° 45.7915'         | 118° 14.9980'         | -46.6                                | 6.2                           | 0.0 to 5.4                     | -46.6 to -52                        |
| FG3-15 (1)    | 33° 45.8420'         | 118° 14.8410'         | -46.6                                | 7.2                           | 0.0 to 5.4                     | -46.6 to -52                        |
| FG3-15 (2)    | 33° 45.8423'         | 118° 14.8407'         | -46.5                                | 7.2                           | 0.0 to 5.5                     | -46.5 to -52                        |
| Subunit FM1-A |                      |                       |                                      |                               |                                |                                     |
| FM1-1 ALT (1) | 33° 43.0214'         | 118° 15.9161'         | -48.9                                | 2.4                           | 0.0 to 2.4                     | -48.9 to -51.3                      |
| FM1-1 ALT (2) | 33° 43.0217'         | 118° 15.9185'         | -49.2                                | 2.2                           | 0.0 to 2.2                     | -49.2 to -51.4                      |
| FM1-2 (1)     | 33° 43.0060'         | 118° 16.0819'         | -45.0                                | 4                             | 0.0 to 4.0                     | -45.0 to -49.0                      |

Table 1. Core Locations: Borrow - 1996 / Channel Deepening - 1997(Kinnetic Laboratories/ToxScan 1996; 1997)

| Core ID       | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|---------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
| FM1-2 (2)     | 33° 43.0072'         | 118° 16.0821'         | -45.2                                | 5                             | 0.0 to 5.0                     | -45.2 to -50.2                      |
| FM1-3 ALT (1) | 33° 43.2290'         | 118° 16.0487'         | -47.3                                | 5.2                           | 0.0 to 4.7                     | -47.3 to -52                        |
| FM1-3 ALT (2) | 33° 43.2264'         | 118° 16.0500'         | -48.3                                | 3.7                           | 0.0 to 3.7                     | -48.3 to -52                        |
| FM1-4 (1)     | 33° 43.1425'         | 118° 16.1570'         | -44.2                                | 9.5                           | 0.0 to 7.8                     | -44.2 to -52                        |
| FM1-4 (2)     | 33° 43.1477'         | 118° 16.1592'         | -44.2                                | 9                             | 0.0 to 7.8                     | -44.2 to -52                        |
| FM1-5 (1)     | 33° 43.3133'         | 118° 16.1167'         | -47.5                                | 2.8                           | 0.0 to 2.8                     | -47.5 to -50.3                      |
| FM1-5 (2)     | 33° 43.3116'         | 118° 16.1167'         | -47.8                                | 4.5                           | 0.0 to 4.2                     | -47.8 to -52                        |
| Subunit FM1-B |                      |                       |                                      |                               |                                |                                     |
| FM1-6 (1)     | 33° 43.3933'         | 118° 16.2750'         | -45.8                                | 5.9                           | 0.0 to 5.9                     | -45.8 to -51.7                      |
| FM1-6 (2)     | 33° 43.3933'         | 118° 16.2750'         | -45.8                                | 7                             | 0.0 to 6.2                     | -45.8 to -52                        |
| FM1-7 (1)     | 33° 43.4783'         | 118° 16.1700'         | -42.4                                | 4.5                           | 0.0 to 4.5                     | -42.4 to -46.9                      |
| FM1-7 (2)     | 33° 43.4820'         | 118° 16.1660'         | -42.5                                | 4.1                           | 0.0 to 4.1                     | -42.5 to -46.6                      |
| FM1-8 (1)     | 33° 43.5324'         | 118° 16.3113'         | -48.4                                | 3                             | 0.0 to 3.0                     | -48.4 to -51.4                      |
| FM1-8 (2)     | 33° 43.5291'         | 118° 16.3091'         | -48.5                                | 3                             | 0.0 to 3.0                     | -48.5 to -51.5                      |
| FM1-9 (1)     | 33° 43.6169'         | 118° 16.2295'         | -44.7                                | 7                             | 0.0 to 7.0                     | -44.7 to -51.7                      |
| FM1-9 (2)     | 33° 43.6188'         | 118° 16.2292'         | -45.0                                | 8.5                           | 0.0 to 7.0                     | -45.0 to -52                        |
| FM1-10 (1)    | 33° 43.6922'         | 118° 16.3746'         | -47.8                                | 6                             | 0.0 to 4.2                     | -47.8 to -52                        |
| FM1-10 (2)    | 33° 43.6927'         | 118° 16.3746'         | -47.9                                | 6.2                           | 0.0 to 4.1                     | -47.9 to -52                        |

Table 2. Bulk Sediment Chemistry Results: Borrow - 1996 / Channel Deepening - 1997 (Kinnetic Laboratories/ToxScan 1996; 1997). (page 1 of 2)

| CG-14   CG-14   CG-15   CG-18   CG-18   CG-18   CG-26   CG-2 | FG1B FG2A                   | 2A FG2B  |           |       |                    |                    |                    |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------|-----------|-------|--------------------|--------------------|--------------------|--------------------------|
| Sand/Gravel (>0.063 mm) 78.7 92.9 90.1 82.7 80.3 95.4 82.4 88.3 90.4 56.3 79.8 76.8 90.6 90.8 78.3 81.3 90.6 77.8 36.9 Silt (0.004 mm - 0.063 mm) 13.9 5.0 7.5 13.2 11.2 3.3 10.5 5.9 5.4 24.6 11.3 12.7 5.9 5.1 13.2 11.8 6.4 15.0 35.3 Clay (<0.004 mm) 7.4 2.1 2.6 4.1 8.5 1.3 7.1 5.8 4.2 19.1 8.8 10.5 3.5 4.1 8.5 6.9 3.0 7.2 27.8 SEDIMENT CONVENTIONALS  Ammonia (mg/Kg) 10U 10U 10U 10U 10U 13 30.1 30.1 30.1 30.1 30.1 30.1 30.1 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             | L/ LOLD  | FG3A      | FG3B  | FG3C               | FM1A               | FM1B               | FM1-2 FM1-8              |
| Silt (0.004 mm - 0.063 mm) 13.9 5.0 7.5 13.2 11.2 3.3 10.5 5.9 5.4 24.6 11.3 12.7 5.9 5.1 13.2 11.8 6.4 15.0 35.3 Clay (<0.004 mm) 7.4 2.1 2.6 4.1 8.5 13.2 7.0 5.9 5.1 13.2 11.8 6.4 15.0 35.3 Clay (<0.004 mm) 7.4 2.1 2.6 4.1 8.5 13.2 7.0 5.9 5.1 13.2 11.8 6.4 15.0 35.3 Clay (<0.004 mm) 7.4 2.1 2.6 4.1 8.5 13.2 7.0 5.9 5.1 13.2 11.8 6.4 15.0 35.3 Clay (<0.004 mm) 7.4 2.1 2.6 4.1 8.5 13.2 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |          |           |       |                    |                    |                    |                          |
| Clay (<0.004 mm)   7.4   2.1   2.6   4.1   8.5   1.3   7.1   5.8   4.2   19.1   8.8   10.5   3.5   4.1   8.5   6.9   3.0   7.2   27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 48.6 55.5                   | .5 40.7  | 30.5      | 38.0  | 33.7               | 23.1               | 50.1               | 36.8 46.4                |
| SEDIMENT CONVENTIONALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30.2 28.3                   | .3 36.8  | 48.1      | 41.7  | 47.3               | 47.1               | 29.7               | 38.0 27.6                |
| Ammonia (mg/Kg)         10U         10U         10U         10U         10U         10U         NA         NA </td <td>21.1 16.1</td> <td>.1 22.5</td> <td>21.4</td> <td>20.3</td> <td>19.0</td> <td>29.8</td> <td>20.1</td> <td>25.2 26.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.1 16.1                   | .1 22.5  | 21.4      | 20.3  | 19.0               | 29.8               | 20.1               | 25.2 26.0                |
| Total sulfides (mg/Kg, dry)  13 0.1U 1.3 0.1U 37 0.10U 13 0.30 9.4 12 0.13 9.7 0.10 1.7 23 2.9 0.10U 1.1 27  Total Volatile Solids (%)  NA N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |          |           |       |                    |                    |                    |                          |
| Total Volatile Solids (%)         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA NA                       | A NA     | NA        | NA    | NA                 | NA                 | NA                 | NA NA                    |
| Total Volatile Solids (%)         NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10 2.5                      | 5 0.52   | 33        | 7.7   | 20                 | 11                 | 130                | 0.10U 0.38               |
| Oil and Grease (mg/Kg, dry)         100U         100U         100U         100U         100U         250         100U         120         100U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NA NA                       | A NA     | NA        | NA    | NA                 | NA                 | NA                 | NA NA                    |
| TRPH (mg/Kg, dry)         100U         100U <td>0.10U 0.10U</td> <td>OU 0.10U</td> <td>0.10U</td> <td>0.28</td> <td>0.12</td> <td>0.11</td> <td>0.10U</td> <td>0.10U 0.10L</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.10U 0.10U                 | OU 0.10U | 0.10U     | 0.28  | 0.12               | 0.11               | 0.10U              | 0.10U 0.10L              |
| TRPH (mg/Kg, dry)         100U         100U <td>230 100L</td> <td>U 310</td> <td>750</td> <td>760</td> <td>560</td> <td>140</td> <td>350</td> <td>110 100U</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 230 100L                    | U 310    | 750       | 760   | 560                | 140                | 350                | 110 100U                 |
| % Solids (%)         75         80         79         81         73         79         76         79         81         70         82         74         81         77         78         79         77         81         70           TOC (%)         0.3         0.1U         0.2         0.1U         0.37         0.10U         0.36         0.21         0.6         0.14         0.47         0.10U         0.21         0.36         0.26         0.10U         0.94           METALS (mg/Kg, dry wt)           Arsenic         2.3         1.6         0.7         0.4         4.1         1.3         6.4         3.5         3.9         4.1         4.0         0.87         2.0         0.79         0.78         1.3         0.79           Cadmium         0.2         0.1         0.1         0.26         0.10U         0.21         0.28         0.10U         0.20         0.10U         0.20         0.10U         0.20         0.10U         0.28         0.10U         0.20         0.10U         0.10U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100U 100L                   | U 150    | 380       | 420   | 300                | 100U               | 170                | 100U 100U                |
| TOC (%)         0.3         0.1U         0.2         0.1U         0.37         0.10U         0.36         0.20         0.21         0.6         0.14         0.47         0.10U         0.21         0.36         0.26         0.10U         0.10U         0.94           METALS (mg/Kg, dry wt)           Arsenic         2.3         1.6         0.7         0.4         4.1         1.3         6.4         3.5         3.9         4.1         4.0         0.87         2.0         0.71         0.80         0.79         0.78         1.3         0.79           Cadmium         0.2         0.1         0.1         0.26         0.10U         0.21         0.20         0.11         0.28         0.10U         0.28         0.10U         0.27         0.10U         0.10U         0.10U         0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72 77                       |          | 70        | 71    | 69                 | 55                 | 54                 | 62 47                    |
| METALS (mg/Kg, dry wt)           Arsenic         2.3         1.6         0.7         0.4         4.1         1.3         6.4         3.5         3.9         4.1         4.0         0.87         2.0         0.71         0.80         0.79         0.78         1.3         0.79           Cadmium         0.2         0.1         0.1         0.26         0.10U         0.21         0.20         0.11         0.28         0.10U         0.27         0.10U         0.10U         0.10U         0.31         0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.45 0.34                   |          | 0.70      | 0.56  | 0.52               | 1.7                | 1.3                | 1.2 1.4                  |
| Arsenic 2.3 1.6 0.7 0.4 4.1 1.3 6.4 3.5 3.9 4.1 4.0 0.87 2.0 0.71 0.80 0.79 0.78 1.3 0.79 Cadmium 0.2 0.1 0.1 0.1 0.26 0.10U 0.21 0.22 0.11 0.28 0.10U 0.27 0.10U 0.10U 0.19 0.21 0.10U 0.31 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                             |          |           |       |                    |                    |                    |                          |
| Cadmium 0.2 0.1 0.1 0.1 0.26 0.10U 0.21 0.22 0.11 0.28 0.10U 0.27 0.10U 0.10U 0.19 0.21 0.10U 0.31 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.52 1.6                    | 6 0.55   | 0.57      | 0.95  | 1.8                | 4.7                | 8.7                | 3.1 4.8                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.64 0.26                   |          | 0.50      | 0.64  | 0.17               | 1.9                | 1.7                | 1.9 13                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42 26                       |          | 46        | 44    | 51                 | 86                 | 78                 | 110 <u>140</u>           |
| Copper 19 7.9 14 14 <b>36</b> 10 25 17 18 <b>35</b> 13 31 6.6 16 29 27 13 25 <b>35</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31 21                       |          | 45        | 43    | 48                 | 71                 | 73                 | 75 78                    |
| Lead 8.2 3.9 6.3 4.2 22 3.5 16 6.1 7.6 20 5.7 31 3.4 9.4 17 20 4.5 8.6 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21 11                       |          | 41        | 40    | 24                 | 21                 | 40                 | 8.0 6.2                  |
| Mercury 0.07 0.04 0.09 0.06 <b>0.17</b> 0.10U 0.14 0.043 0.063 <b>0.15</b> 0.048 <b>0.16</b> 0.020U 0.050 0.11 <b>0.17</b> 0.035 0.052 <b>0.19</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>0.20</b> 0.12            |          | 0.37      | 0.35  | 0.25               | 0.23               | 0.36               | 0.11 0.099               |
| Nickel 13 10 12 15 19 11 16 16 13 <b>27</b> 16 19 10 12 18 17 16 <b>23 24</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>25</b> 16                |          | 25        | 26    | 39                 | <u>55</u>          | 41                 | <u>95</u> <u>110</u>     |
| Selenium 0.1 0.1U 0.1U 0.1U 0.31 0.10U 0.19 0.10U 0.11 0.27 0.15 0.31 0.10 0.21 0.13 0.18 0.19 0.19 1.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.2 0.22                    |          | 0.39      | 1.1   | 1.3                | 7.0                | 2.8                | 11 17                    |
| Silver 0.1U 0.1U 0.1U 0.1U 0.15 0.10U 0.12 0.10U 0.13 0.10U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.11 0.10                   |          |           | 0.21  | 0.10               | 0.70               | 0.64               | 0.80 1.5                 |
| Zinc 54 28 50 53 90 42 68 52 51 100 55 86 31 52 78 78 54 77 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79 55                       |          | 110       | 110   | 94                 | 140                | 150                | 200 180                  |
| ORGANOTINS (ppb, dry weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                             |          |           |       | <u> </u>           |                    |                    |                          |
| Dibutyltin 7 1.0U 4 1.0U 16 1.0U 5.6 1.5 6.7 9.4 1.0U 28 1.0U 11 19 12 1.0U 1.0U 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18 8.5                      | 5 9.7    | 35        | 14    | 23                 | 8.7                | 29                 | 1.0U 1.0U                |
| Monobutyltin 3.0 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0U 1.0U                   |          | 1.0U      | 1.0U  | 1.0U               | 1.0U               | 1.0U               | 1.0U 1.0U                |
| Tetrabutyltin 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U 1.0U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0U 1.0U                   |          | 1.0U      | 1.0U  | 1.0U               | 1.0U               | 1.0U               | 1.0U 1.0U                |
| Tributyltin 37 1.0U 6.0 1.0U 70 1.0U 19 2.1 28 20.0 1.9 64 1.0U 42 55 31 1.0U 1.0U 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 19                       |          | 75        | 17    | 26                 | 38                 | 120                | 1.0U 1.0U                |
| CHLORINATED PESTICIDES (ppb, dry weight)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |          |           |       |                    |                    |                    |                          |
| Aldrin 0.33U 0.31U 0.32U 0.31U 0.34U 0.31U 0.33U 0.32U 0.31U 0.36U 0.30U 0.34U 0.31U 0.33U 0.32U 0.32U 0.32U 0.32U 0.31U 0.36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.35U 0.33L                 | 3U 0.36U | 0.36U     | 0.35U | 0.36U              | 0.45U              | 0.46U              | 0.40U 0.53L              |
| alpha-BHC 0.33U 1.8 0.32U 0.91 4.0 0.31U 3.1 0.82 0.31U 0.36U 0.30U 0.34U 0.31U 0.33U 0.32U 0.32U 0.32U 0.31U 4.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.7 1.4                     |          | 11        | 2.2   | 3.2                | 1.4                | 2.0                | 0.40U 0.53L              |
| beta-BHC 0.33U 0.31U 0.32U 0.31U 0.34U 0.31U 0.33U 0.32U 0.31U 0.36U 0.30U 0.34U 0.31U 0.33U 0.32U 0.32U 0.32U 0.32U 0.31U 0.36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.35U 0.33L                 | 3U 0.36U | 0.36U     | 0.35U | 0.36U              | 0.45U              | 0.46U              | 0.40U 0.53L              |
| delta-BHC 0.33U 0.31U 0.32U 0.31U 0.34U 0.31U 0.33U 0.32U 0.31U 0.36U 0.30U 0.34U 1.4 0.33U 0.32U 0.32U 0.32U 0.31U 0.36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.35U 0.33L                 | 3U 0.36U | 0.36U     | 0.35U | 0.36U              | 0.45U              | 0.46U              | 0.40U 0.53L              |
| gamma-BHC (lindane) 0.33U 0.31U 0.32U 0.31U 0.32U 0.31U 0.34U 0.31U 0.33U 0.32U 0.31U 0.32U 0.31U 0.33U 0.32U 0.31U 0.36U 0.30U 0.30U 0.34U 0.31U 0.32U 0.32U 0.32U 0.31U 0.36U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.35U 0.33U                 | 3U 0.36U | 0.36U     | 0.35U | 0.36U              | 0.45U              | 0.46U              | 0.40U 0.53L              |
| alpha-Chlordane 3.3U 3.1U 3.2U 3.1U 3.4U 3.1U 3.3U 3.2U 3.1U 3.6U 3.0U 3.4U 3.1U 3.3U 3.2U 3.2U 3.2U 3.1U 3.6U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5U 3.3U                   | 3.6U     | 3.6U      | 3.5U  | 3.6U               | 4.5U               | 4.6U               | 4.0U 5.3U                |
| gamma-Chlordane 3.3U 3.1U 3.2U 3.1U 3.4U 3.1U 3.3U 3.2U 3.1U 3.6U 3.0U 3.4U 3.1U 3.3U 3.2U 3.2U 3.2U 3.1U 3.6U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.5U 3.3U                   | 3.6U     | 3.6U      | 3.5U  | 3.6U               | 4.5U               | 4.6U               | 4.0U 5.3U                |
| 4,4'-DDD 0.72 0.31U 0.67 0.31U 4.7 0.31U 1.4 0.32U 0.58 1.8 0.30U 0.34U 0.31U 0.72 5.9 3.5 1.1 0.31U 3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.9 1.3                     | 3 1.3    | 12        | 5.1   | 5.6                | 5.8                | 6.6                | 0.40U 0.53L              |
| 4,4'-DDE <b>24</b> 0.31 <b>15</b> 0.46 <b>36</b> 0.31U <b>16 2.7 9.2 9.8</b> 0.52 <b>34</b> 0.31U <b>6.9 <u>27</u> 14 23</b> 0.48 <u>30</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 6.0                      | 9 21     | <u>34</u> | 14    | 20                 | <u>130</u>         | <u>170</u>         | 0.40U 1.0                |
| 4,4'-DDT 0.33U 0.31U 0.32U 0.31U 5.9 0.31U 2.2 0.32U 0.69 0.81 0.30U 0.34U 0.31U 4.4 4.7 1.4 0.40 0.31U 2.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>29</u> 6.9               |          |           |       |                    |                    |                    |                          |
| Total DDTs 24.72 0.31 15.67 0.46 46.6 0.31U 19.6 2.7 10.5 12.4 0.52 34 0.31U 12.0 37.6 18.9 24.5 0.48 35.6 Bold values equal or exceed the ERL.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.2 0.54<br><b>36.1 8.7</b> | 54 0.36U |           | 2.1   | 1.0<br><b>26.6</b> | 0.98<br><b>137</b> | 0.96<br><b>178</b> | 0.40U 0.53U<br>0.40U 1.0 |

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Bold and underlined values equal or exceed the ERM.

<sup>&</sup>quot; U\* " Qualifier denotes reporting limit raised due to matrix interference

<sup>\*</sup> Individual core results are available in September 1997 report " Environmental Evaluation of Sediments for the Channel Deepening Program Port of Los Angeles - Vol. 1"

Table 2. Bulk Sediment Chemistry Results: Borrow - 1996 / Channel Deepening - 1997 (Kinnetic Laboratories/ToxScan 1996; 1997). (page 2 of 2)

|                                               |           | BORR       | OW 199      | 6          |          |            |           |            |           |          |            |            |              |           | CHAN       | NEL DE   | PENIN     | G PROJ     | ECT 199   | 97*       |          |          |           |          |           |            |          |            |            |
|-----------------------------------------------|-----------|------------|-------------|------------|----------|------------|-----------|------------|-----------|----------|------------|------------|--------------|-----------|------------|----------|-----------|------------|-----------|-----------|----------|----------|-----------|----------|-----------|------------|----------|------------|------------|
|                                               | CG-1A     | CG-1A      | CG-1B       | CG-1B      | CG-2A    | CG-2A      | CG-2B     | CG-2B      | CG-2C     | CG-3A    | CG-3A      | CG-3B      | CG-3B        | CG-3C     | CG-4A      | CG-4A    | CG-4B     | CG-4B      |           |           |          |          |           |          |           |            |          |            |            |
| Analytical Parameter                          | TOP       | BOT        | TOP         | BOT        | TOP      | BOT        | TOP       | BOT        | BOT       | TOP      | BOT        | TOP        | BOT          | BOT       | TOP        | BOT      | TOP       | BOT        | FG1A      | FG1B      | FG2A     | FG2B     | FG3A      | FG3B     | FG3C      | FM1A       | FM1B     | FM1-2      | FM1-8      |
| CHLORINATED PESTICIDES (Continued)            |           |            |             |            |          |            |           |            |           |          |            |            |              |           |            |          |           |            |           |           |          |          |           |          |           |            |          |            |            |
| Dieldrin                                      | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.37      | 0.37      | 0.33U    | 0.36U    | 1.7       | 0.45     | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Endosulfan I                                  | 1.3U      | 1.3U       | 1.3U        | 1.2U       | 1.4U     | 1.3U       | 1.3U      | 1.3U       | 1.2U      | 1.4U     | 1.2U       | 1.4U       | 1.2U         | 1.3U      | 1.3U       | 1.3U     | 1.3U      | 1.2U       | 1.4U      | 1.4U      | 1.3U     | 1.4U     | 1.4U      | 1.4U     | 1.4U      | 1.8U       | 1.8U     | 1.6U       | 2.1U       |
| Endosulfan II                                 | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Endosulfan sulfate                            | 6.7U      | 6.3U       | 6.3U        | 6.2U       | 6.9U     | 6.3U       | 6.6U      | 6.4U       | 6.2U      | 7.1U     | 6.1U       | 6.8U       | 6.2U         | 6.5U      | 6.4U       | 6.3U     | 6.5U      | 6.2U       | 7.1U      | 6.9U      | 6.5U     | 7.1U     | 7.1U      | 7.0U     | 7.2U      | 9.1U       | 9.2U     | 8.1U       | 11U        |
| Endrin                                        | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.59      | 2.1      | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Endrin Aldehyde                               | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Endrin Ketone                                 | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 2.2        | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Heptachlor                                    | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Heptachlor epoxide                            | 0.33U     | 0.31U      | 0.32U       | 0.31U      | 0.34U    | 0.31U      | 0.33U     | 0.32U      | 0.31U     | 0.36U    | 0.30U      | 0.34U      | 0.31U        | 0.33U     | 0.32U      | 0.32U    | 0.32U     | 0.31U      | 0.36U     | 0.35U     | 0.33U    | 0.36U    | 0.36U     | 0.35U    | 0.36U     | 0.45U      | 0.46U    | 0.40U      | 0.53U      |
| Toxaphene                                     | 20U       | 19U        | 19U         | 18U        | 21U      | 19U        | 20U       | 19U        | 19U       | 21U      | 18U        | 20U        | 18U          | 20U       | 19U        | 19U      | 19U       | 19U        | 21U       | 21U       | 20U      | 21U      | 21U       | 21U      | 22U       | 27U        | 28U      | 24U        | 32U        |
| Methoxychor                                   | 6.7U      | 6.3U       | 6.3U        | 6.2U       | 6.9U     | 6.3U       | 6.6U      | 6.4U       | 6.2U      | 7.1U     | 6.1U       | 6.8U       | 6.2U         | 6.5U      | 6.4U       | 6.3U     | 6.5U      | 6.2U       | 7.1U      | 6.9U      | 6.5U     | 7.1U     | 7.1U      | 7.0U     | 7.2U      | 9.1U       | 9.2U     | 8.1U       | 11U        |
| PCBs (ppb, dry weight)                        |           |            |             |            |          |            |           |            |           |          |            |            |              |           |            |          |           |            |           |           |          |          |           |          |           |            |          |            |            |
| PCB 1242                                      | 13U       | 13U        | 13U         | 12U        | 14U      | 13U        | 13U       | 13U        | 12U       | 14U      | 12U        | 14U        | 12U          | 13U       | 13U        | 13U      | 13U       | 12U        | 14U       | 14U       | 13U      | 14U      | 14U       | 14U      | 14U       | 18U        | 18U      | 16U        | 21U        |
| PCB 1248                                      | NA        | NA         | NA          | NA         | NA       | NA         | NA        | NA         | NA        | NA       | NA         | NA         | NA           | NA        | NA         | NA       | NA        | NA         | NA        | NA        | NA       | NA       | NA        | NA       | NA        | NA         | NA       | NA         | NA         |
| PCB 1254                                      | 13U       | 13U        | 13U         | 12U        | 64       | 13U        | 24        | 13U        | 12U       | 65       | 12U        | 180        | 12U          | 33        | 60         | 47       | 79        | 12U        | 50        | 53        | 26       | 130      | 100       | 42       | 46        | 65         | 130      | 16U        | 21U        |
| PCB 1260                                      | 13U       | 13U        | 13U         | 12U        | 14U      | 13U        | 13U       | 13U        | 12U       | 14U      | 12U        | 14U        | 12U          | 13U       | 13U        | 13U      | 13U       | 12U        | 14U       | 14U       | 13U      | 14U      | 14U       | 14U      | 14U       | 18U        | 18U      | 16U        | 21U        |
| Total PCBs                                    | 13U       | 13U        | 13U         | 12U        | 64       | 13U        | 24        | 13U        | 12U       | 65       | 12U        | 180        | 12U          | 33        | 60         | 47       | 79        | 12U        | 50        | 53        | 26       | 130      | 100       | 42       | 46        | 65         | 130      | 16U        | 21U        |
| SEMI-VOLATILES (ppb, dry wt)                  |           |            |             |            |          |            |           |            |           |          |            |            |              |           |            |          |           |            |           |           |          |          |           |          |           |            |          |            |            |
| Naphthalene                                   | 10U       | 9.4U       | 9.5U        | 9.2U       | 10U      | 9.4U       | 9.8U      | 9.6U       | 9.3U      | 11U      | 9.1U       | 10         | 9.2U         | 9.8U      | 9.6U       | 9.5U     | 9.7U      | 9.3U       | 11U       | 10U       | 9.8U     | 11U      | 11U       | 11U      | 11U       | 14U        | 14U      | 12U        | 16U        |
| Acenaphthylene                                | 10U       | 9.4U       | 9.5U        | 9.2U       | 10U      | 9.4U       | 9.8U      | 9.6U       | 9.3U      | 11U      | 9.1U       | 18         | 9.2U         | 9.8U      | 11         | 9.5U     | 9.7U      | 9.3U       | 11U       | 17        | 9.8U     | 11U      | 26        | 14       | 12        | 14U        | 22       | 12U        | 16U        |
| Acenaphthene                                  | 10U       | 9.4U       | 9.5U        | 9.2U       | 10U      | 9.4U       | 9.8U      | 9.6U       | 9.3U      | 11U      | 9.1U       | 13         | 9.2U         | 9.8U      | 9.6U       | 9.5U     | 9.7U      | 9.3U       | 11U       | 10U       | 9.8U     | 11U      | 11U       | 11U      | 11U       | 14U        | 14U      | 12U        | 16U        |
| Fluorene                                      | 10U       | 9.4U       | 9.5U        | 9.2U       | 10U      | 9.4U       | 9.8U      | 9.6U       | 9.3U      | 11U      | 9.1U       | 18         | 9.2U         | 9.8U      | 9.6U       | 9.5U     | 9.7U      | 9.3U       | 11U       | 10U       | 9.8U     | 11U      | 11U       | 11U      | 11U       | 14U        | 14U      | 12U        | 16U        |
| Phenanthrene                                  | 12        | 9.4U       | 9.5U        | 9.2U       | 25       | 9.4U       | 24        | 9.6U       | 9.3U      | 11       | 9.1U       | 37         | 9.2U         | 9.8U      | 18         | 15       | 9.7U      | 9.3U       | 16        | 25        | 26       | 11U      | 54        | 25       | 67        | 24         | 46       | 12U        | 16U        |
| Anthracene                                    | 10U       | 9.4U       | 9.5U        | 9.2U       | 32       | 9.4U       | 11        | 9.6U       | 9.3U      | 20       | 9.1U       | 65         | 9.2U         | 12        | 29         | 15       | 9.7U      | 9.3U       | 20        | 36        | 26       | 21       | 53        | 53       | 38        | 20         | 46       | 12U        | 16U        |
|                                               |           |            | 19          | 9.2U       | 80       | 9.4U       | 41        | 9.6U       |           |          | 9.1U       | 470        | 9.2U         | 17        | 35         | 19       | 9.7U      | 9.3U       | 30        | 43        | 29       | 21       | 76        | 53       | 81        | 45         | 85       | 12U        | 16U        |
| Fluoranthene                                  | 21        | 9.4U       |             |            |          | 9.4U       | 58        |            | 12        | 14       |            |            | 9.2U<br>9.2U | 38        |            | 29       |           |            | 58        | 43<br>97  |          |          |           |          |           |            |          | 12U        | 34         |
| Pyrene                                        | 39        | 9.4U       | 21          | 17         | 130      |            |           | 9.6U       | 22        | 43       | 9.10       | 1500       |              |           | 56         |          | 11        | 9.3U       |           |           | 41       | 69       | 190       | 410      | 110       | 73         | 110      |            |            |
| Benzo(a)anthracene                            | 19        | 9.40       | 12          | 9.2U       | 47       | 9.4U       | 18        | 9.6U       | 12        | 13       | 9.1U       | 220        | 9.2U         | 13        | 28         | 18       | 9.7U      | 9.3U       | 27        | 37        | 24       | 17       | 67        | 170      | 58        | 38         | 68       | 12U        | 16U        |
| Chrysene                                      | 32        | 9.40       | 30          | 9.2U       | 84       | 9.4U       | 34        | 9.6U       | 26        | 24       | 9.10       | 240        | 9.2U         | 27        | 64         | 33       | 12        | 9.3U       | 47        | 72        | 47       | 39       | 120       | 310      | 80        | 51         | 96       | 12U        | 16U        |
| Benzo(b)fluoranthene                          | 45        | 9.4U       | 44          | 9.2U       | 190      | 9.4U       | 71        | 12         | 51        | 120      | 9.1U       | 450        | 9.2U         | 94        | 220        | 96       | 36        | 9.3U       | 130       | 210       | 160      | 110      | 260       | 170      | 230       | 110        | 200      | 12U        | 16U        |
| Benzo(k)fluoranthene                          | 44        | 9.4U       | 42          | 9.2U       | 180      | 9.4U       | 63        | 9.7        | 45        | 100      | 9.1U       | 350        | 9.2U         | 74        | 200        | 81       | 30        | 9.3U       | 100       | 180       | 120      | 84       | 240       | 140      | 190       | 85         | 180      | 12U        | 16U        |
| Benzo(a)pyrene                                | 40<br>10  | 9.4U       | 34          | 9.2U       | 140      | 9.4U       | 56        | 11         | 35        | 92<br>45 | 9.1U       | 320<br>200 | 9.2U         | 74        | 140<br>130 | 80<br>58 | 34<br>25  | 9.3U       | 87<br>51  | 150       | 82       | 90       | 230       | 200      | 170       | 96         | 150      | 12U        | 16U        |
| Indeno[1,2,3-CD]pyrene Dibenzo(a,h)anthracene | 19<br>13U | 13U<br>13U | 19U*<br>13U | 12U<br>12U | 88<br>23 | 13U<br>13U | 34<br>13U | 13U<br>13U | 20<br>12U | 45<br>16 | 12U<br>12U | 200<br>64  | 12U<br>12U   | 47<br>13U | 38         | 13U      | ∠5<br>13U | 12U<br>12U | 51<br>14U | 90<br>14U | 60<br>18 | 44<br>16 | 130<br>44 | 86<br>45 | 110<br>36 | 18U<br>18U | 90<br>28 | 16U<br>16U | 21U<br>21U |
| Benzo[ghi]perylene                            | 20U*      | 13U        | 19U*        | 12U        | 75       | 13U        | 33        | 13U        | 17        | 38       | 12U        | 120        | 12U          | 44        | 110        | 57       | 13U       | 12U        | 50        | 80        | 55       | 47       | 130       | 110      | 120       | 51         | 28       | 16U        | 21U        |
| Benzo(e)pyrene                                | NA        | NA         | NA          | NA         | NA       | NA         | NA        | NA         | NA        | NA       | NA         | NA         | NA           | NA        | NA         | NA       | NA        | NA         | NA        | NA        | NA       | NA       | NA        | NA       | NA        | NA         | NA       | NA         | NA         |
| Total detectable PAHs                         |           |            | 9.5-19U     |            | 1100     | 9.4-13U    |           | 33         | 240       |          |            |            | 9.2-12U      |           | 1100       | 500      |           | 9.3-12U    |           | 1000      | 690      | 560      | 1600      | 1800     | 1300      | 590        | 1100     | 12-16U     | 34         |
| Total Phthalates                              | 10U       | 9.4U       | 9.5U        | 9.2U       | 390      | 52         | 410       | 80         | 200       | 250      | 130        | 470        | 220          | 310       | 560        | 470      | 230       | 130        | 250       | 840       | 280      | 250      | 1000      | 640      | 690       | 620        | 710      | 300        | 470        |
| Total Phenols                                 | NA        | NA         | NA          | NA         | NA       | NA         | NA        | NA         | NA        | NA       | NA         | NA         | NA           | NA        | NA         | NA       | NA        | NA         | NA        | NA        | NA       | NA       | NA        | NA       | NA        | NA         | NA       | NA         | NA         |

Bold values equal or exceed the ERL.

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Bold and underlined values equal or exceed the ERM.

<sup>&</sup>quot; U\* " Qualifier denotes reporting limit raised due to matrix interference

<sup>\*</sup> Individual core results are available in September 1997 report " Environmental Evaluation of Sediments for the Channel Deepening Program Port of Los Angeles - Vol. 1"

Table 3. Elutriate Chemistry Results: Port of Los Angeles 2001 Deepening Project (Kinnetic Laboratories/ToxScan 1996; 1997). (Page 1 of 2)

|                                            |                | BOF            | RROW 19        | 996            |                | CHANNEL DEEPENING PROJECT 1997* |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                       |                        |
|--------------------------------------------|----------------|----------------|----------------|----------------|----------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|-----------------------|------------------------|
|                                            | CG-1A          | CG-1A          | CG-1B          | CG-1B          | Harbor         | CG-2A                           | CG-2A          | CG-2B          | CG-2B          | CG-2C          | CG-3A          | CG-3A          | CG-3B          | CG-3B          | CG-3C          | CG-4A          | CG-4A          | CG-4B          | CG-4B          | Harbor         | WQS Salt<br>Water Max | WQS Salt<br>Water Cont |
| Analytical Parameter                       | TOP            | ВОТ            | TOP            | ВОТ            | Water          | TOP                             | вот            | TOP            | вот            | ВОТ            | TOP            | ВОТ            | TOP            | ВОТ            | BOT            | TOP            | BOT            | TOP            | ВОТ            | Water          | EPA 2000              | EPA 2000               |
| CONVENTIONALS                              |                |                |                |                |                |                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                       |                        |
| Ammonia (mg/L)                             | NA             | NA             | NA             | NA             | NA             | NA                              | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             | NA             |                       |                        |
| Water soluble sulfides (mg/L)              | 0.5U           | 0.5U           | 0.5U           | 0.5U           | 0.5U           | 0.50U                           | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          | 0.50U          |                       |                        |
| Oil and Grease (mg/L)                      | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U                            | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           | 5.0U           |                       |                        |
| METALS (μg/L, wet wt)                      |                |                |                |                |                |                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                       |                        |
| Arsenic                                    | 3.0            | 1.5            | 4.2            | 1.6            | 2.3            | 9.4                             | 1.2            | 5.6            | 3.7            | 2.1            | 10             | 3.6            | 6.8            | 1.8            | 3.1            | 6.0            | 2.1            | 8.5            | 4.0            | 6.8            | 69                    | 36                     |
| Cadmium                                    | 0.07           | 0.17           | 0.07           | 0.15           | 0.07           | 0.29                            | 0.18           | 0.24           | 0.40           | 0.22           | 0.35           | 0.31           | 0.38           | 0.31           | 0.16           | 0.22           | 0.21           | 0.26           | 0.33           | 0.19           | 42                    | 9.3                    |
| Chromium                                   | 0.5U           | 0.5U           | 0.5U           | 0.5U           | 0.5U           | 20                              | 21             | 57             | 20             | 20             | 20             | 20             | 28             | 18             | 18             | 18             | 21             | 23             | 21             | 21             | 1100                  | 50                     |
| Copper                                     | 1.2            | 3.8            | 14             | 7.9            | 9.9            | 2.1                             | 3.4            | 1.8            | 1.9            | 1.7            | 1.5            | 2.1            | 1.6            | 2.6            | 1.5            | 1.1            | 2.2            | 1.1            | 1.7            | 5.2            | 4.8                   | 3.1                    |
| Lead                                       | 0.7            | 0.1            | 0.4            | 0.5            | 0.4            | 0.67                            | 0.43           | 0.67           | 0.51           | 0.71           | 0.57           | 0.32           | 0.70           | 0.52           | 0.58           | 0.42           | 0.28           | 0.49           | 0.39           | 0.53           | 210                   | 8.1                    |
| Mercury                                    | 0.1U           | 0.1U           | 0.1U           | 0.1U           | 0.1            | 0.10U                           | 0.10U          | 0.14           | 0.10U          | 0.16(a)               | 0.04 (b)               |
| Nickel                                     | 1.7            | 4.5            | 60             | 5.8            | 5.2            | 3.4                             | 2.5            | 2.0            | 2.7            | 2.0            | 1.5            | 3.3            | 1.7            | 2.9            | 1.2            | 1.3            | 5.0            | 1.3            | 4.5            | 2.0            | 74.0                  | 8.2                    |
| Selenium                                   | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U                            | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 1.0U           | 290                   | 71                     |
| Silver                                     | 0.19           | 0.06           | 0.08           | 0.13           | 0.05U          | 0.05U                           | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.05U          | 0.06           | 0.05U          | 1.90                  |                        |
| Zinc                                       | 4.2            | 12             | 9.6            | 5.6            | 9.7            | 6.8                             | 26             | 11             | 9.2            | 9.3            | 13             | 6.8            | 5.0            | 3.6            | 4.2            | 3.0            | 10             | 3.5            | 8.0            | 10             | 90                    | 81                     |
| ORGANOTINS (ppt (ng/L) wet weight)         |                |                |                |                |                |                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                       |                        |
| Dibutyltin                                 | 2.0U           | 17             | 2              | 8              | 21             | 2.0U                            | 44             | 2.0U           | 2.0U           | 2.3            | 2.0U           | 3.8            | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 6.2            | 2.0U           | 14             | 30             |                       |                        |
| Monobutyltin                               | 2.0U           | 2.0U           | 2.0U           | 5              | 3              | 2.0U                            | 2.3            | 2.0U           | 2.8            | 2.0U           | 2.3            | 3.7            |                       |                        |
| Tetrabutyltin                              | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U                            | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 2.0U           |                       |                        |
| TributyItin                                | 2.0U           | 2.0U           | 2.0U           | 2.0U           | 4              | 4.0                             | 4.6            | 7.4            | 4.2            | 4.2            | 2.0U           | 2.0U           | 3.6            | 2.0U           | 2.0U           | 2.4            | 2.0U           | 2.0U           | 2.0U           | 7.5            |                       |                        |
| CHLORINATED PESTICIDES (ppb, wet weight)   |                |                |                |                |                |                                 |                |                |                |                |                |                |                |                |                |                |                |                |                |                |                       |                        |
| Aldrin                                     | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 1.3                   |                        |
| alpha-BHC                                  | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          |                       |                        |
| beta-BHC                                   | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          |                       |                        |
| delta-BHC                                  | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          |                       |                        |
| gamma-BHC (lindane)                        | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.16                  |                        |
| alpha-Chlordane                            | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U                           | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.09                  | 0.004                  |
| gamma-Chlordane                            | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U                           | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.10U          | 0.09                  | 0.004                  |
| 4,4'-DDD                                   | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          |                       |                        |
| 4,4'-DDE                                   | 0.01U          | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U          | 0.01U                           | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U          | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U          | 0.01U          | 0.12                  | 0.001                  |
| 4,4'-DDT<br>Total DDTs                     | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U          | 0.01U<br>0.01U | 0.01U<br>0.01U                  | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.01U          | 0.01U          | 0.01U          | 0.01U<br>0.01U | 0.01U<br>0.01U | 0.13                  | 0.001                  |
| a Mercury values not established under the |                |                |                |                |                |                                 |                |                | 0.010          | 0.010          |                |                |                |                | ed at met      |                |                | 0.010          | 0.010          | 0.010          |                       |                        |

a. Mercury values not established under the California Toxics Rule. Value is the daily maximum from the 1997 Ocean Plan.

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

b. Mercury values not established under the California Toxics Rule. Value is the 6-month median from the 1997 Ocean Plan.

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

<sup>\*</sup> Individual core results are available in September 1997 report " Environmental Evaluation of Sediments for the Channel Deepening Program Port of Los Angeles - Vol. 1"

Table 3. Elutriate Chemistry Results: Port of Los Angeles 2001 Deepening Project (Kinnetic Laboratories/ToxScan 1996;1997). (Page 2 of 2)

| Table 5. Eluthate Chemistry Rest   |              |              | RROW         |              | эсорон.         | 1.9 1 10,0   | 70t (1 till 1 | .01.0        | oratorio     |              |              |              | <u> </u>     | PROJE        | CT 1997      | 7*           |              |              |              |                 |                       |                        |
|------------------------------------|--------------|--------------|--------------|--------------|-----------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|-----------------------|------------------------|
|                                    |              |              |              |              |                 |              |               |              |              |              |              |              |              |              |              |              |              |              |              |                 | WQS Salt              | WQS Salt               |
| Analytical Parameter               | CG-1A<br>TOP | CG-1A<br>BOT | CG-1B<br>TOP | CG-1B<br>BOT | Harbor<br>Water | CG-2A<br>TOP | CG-2A<br>BOT  | CG-2B<br>TOP | CG-2B<br>BOT | CG-2C<br>BOT | CG-3A<br>TOP | CG-3A<br>BOT | CG-3B<br>TOP | CG-3B<br>BOT | CG-3C<br>BOT | CG-4A<br>TOP | CG-4A<br>BOT | CG-4B<br>TOP | CG-4B<br>BOT | Harbor<br>Water | Water Max<br>EPA 2000 | Water Cont<br>EPA 2000 |
| CHLORINATED PESTICIDES (Continued) |              |              |              |              |                 |              |               |              |              |              |              |              |              |              |              |              |              |              |              |                 |                       |                        |
| Dieldrin                           | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.71                  | 0.0019                 |
| Endosulfan I                       | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           | 0.02U        | 0.02U         | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           | 0.034                 | 0.0087                 |
| Endosulfan II                      | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.034                 | 0.0087                 |
| Endosulfan sulfate                 | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           | 0.02U        | 0.02U         | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           |                       |                        |
| Endrin                             | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.037                 | 0.0023                 |
| Endrin Aldehyde                    | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           |                       |                        |
| Endrin Ketone                      | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           |                       |                        |
| Heptachlor                         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           |                       |                        |
| Heptachlor epoxide                 | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           | 0.01U        | 0.01U         | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U        | 0.01U           |                       |                        |
| Toxaphene                          | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U           | 0.15U        | 0.15U         | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U        | 0.15U           |                       |                        |
| Methoxychor                        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           | 0.02U        | 0.02U         | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U        | 0.02U           |                       |                        |
| PCBs (ppb, wet weight)             |              |              |              |              |                 |              |               |              |              |              |              |              |              |              |              |              |              |              |              |                 |                       |                        |
| PCB 1242                           | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           | 0.10U        | 0.10U         | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           |                       |                        |
| PCB 1248                           | NA           | NA           | NA           | NA           | NA              | NA           | NA            | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA              |                       |                        |
| PCB 1254                           | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           | 0.10U        | 0.10U         | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           |                       |                        |
| PCB 1260                           | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           | 0.10U        | 0.10U         | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           |                       |                        |
| Total PCBs                         | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           | 0.10U        | 0.10U         | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U        | 0.10U           |                       | 0.03                   |
| SEMI-VOLATILES (ppb, wet wt)       |              |              |              |              |                 |              |               |              |              |              |              |              |              |              |              |              |              |              |              |                 |                       |                        |
| Naphthalene                        | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Acenaphthylene                     | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Acenaphthene                       | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Fluorene                           | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Phenanthrene                       | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Anthracene                         | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Fluoranthene                       | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Pyrene                             | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Benzo(a)anthracene                 | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Chrysene                           | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Benzo(b)fluoranthene               | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Benzo(k)fluoranthene               | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Benzo(a)pyrene                     | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Indeno[1,2,3-CD]pyrene             | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Dibenzo(a,h)anthracene             | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       |                        |
| Benzo[ghi]perylene                 | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       | 45                     |
| Total Phanala                      | 10U          | 10U          | 10U          | 10U          | 10U             | 10U          | 10U           | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U          | 10U             |                       | 15                     |
| Total Phenols                      | NA           | NA           | NA           | NA           | NA              | NA           | NA            | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA           | NA              |                       |                        |

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

<sup>&</sup>quot; U\* " Qualifier denotes reporting limit raised due to matrix interference

<sup>\*</sup> Individual core results are available in September 1997 report " Environmental Evaluation of Sediments for the Channel Deepening Program Port of Los Angeles - Vol. 1"

Table 4. Toxicity Results: Channel Deepening - 1997 (Kinnetic Laboratories/ToxScan 1997).

|                        |       |       |       | СН    | ANNEL | DEEPE | NING F | ROJEC      | T 1997 |     |     |         |
|------------------------|-------|-------|-------|-------|-------|-------|--------|------------|--------|-----|-----|---------|
|                        | FG-1A | FG-1B | FG-2A | FG-2B | FG-3A | FG-3B | FG-3C  | FM-1A      | FM-1B  | LA2 | LA3 | CONTROL |
| Water Column Bioassays |       |       |       |       |       |       |        |            |        |     |     |         |
| (LC50 / EC50)          |       |       |       |       |       |       |        |            |        |     |     |         |
| Mytilus Survival       | >100% | >100% | >100% | >100% | >100% | >100% | >100%  | >100%      | >100%  | NA  | NA  | >100%   |
| Mytilus Development    | >100% | >100% | >100% | >100% | >100% | >100% | >100%  | >100%      | >100%  | NA  | NA  | >100%   |
| Mysidopsis Survival    | >100% | >100% | >100% | >100% | >100% | >100% | >100%  | >100%      | >100%  | NA  | NA  | >100%   |
| Menidia Survival       | >100% | >100% | >100% | >100% | >100% | >100% | >100%  | >100%      | >100%  | NA  | NA  | >100%   |
| Benthic Bioassays      |       |       |       |       |       |       |        |            |        |     |     |         |
| (% Survival)           |       |       |       |       |       |       |        |            |        |     |     |         |
| Rhepoxynius            | 81%   | 79%   | 77%   | 68%   | 75%   | 77%   | 79%    | 82%        | 72%    | 94% | 79% | 99%     |
| Eohaustorius           | NT     | NT         | NT     | NT  | NT  | NT      |
| Ampelisca              | NT     | NT         | NT     | NT  | NT  | NT      |
| Nephtys                | 92%   | 90%   | 93%   | 95%   | 99%   | 97%   | 99%    | <u>83%</u> | 95%    | 99% | 99% | 97%     |
| Mysidopsis             | 95%   | 82%   | 96%   | 98%   | 98%   | 82%   | 99%    | 96%        | 100%   | 98% | 96% | 99%     |

Bolded values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2.

Bolded and underlined values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2 and LA3.

NA = Not applicable - references not tested in water column bioassays.

NT = Not tested in this program.

Table 5. Mean Concentration of Detected Contaminants - *Macoma nasuta* Bioaccumulation (Kinnetic Laboratories/ToxScan 1997).

|                                 |            |            |       | CHAN        | INEL DEE   | PENING F   | PROJECT   | - 1997     |       |                  |                  |
|---------------------------------|------------|------------|-------|-------------|------------|------------|-----------|------------|-------|------------------|------------------|
| Analytical Parameter            | FG-1A      | FG-1B      | FG-2A | FG-2B       | FG-3A      | FG-3B      | FG-3C     | FM-1A      | FM-1B | LA2              | LA3              |
| METALS (mg/Kg, dry wt)          |            |            |       |             |            |            |           |            |       |                  |                  |
| Arsenic                         | 35         | 29         | 33    | 35          | 34         | 21         | 24        | 28         | 32    | 36               | 32               |
| Chromium                        | 2.5        | 4.7        | 3.1   | 4.5         | 3.8        | 2.9        | 3.6       | 4.5        | 3.9   | 3.4              | 3.2              |
| Copper                          | 12         | 11         | 12    | 8.5         | <u>13</u>  | 7.6        | 10        | <u>13</u>  | 9.2   | 8.6              | 8.3              |
| Lead                            | <u>3.1</u> | <u>3.2</u> | 2.3   | <u>2.7</u>  | <u>4.4</u> | <u>2.7</u> | 3.8       | 1.9        | 1.9   | 1.5              | 1.4              |
| Mercury                         | <u>0.2</u> | 0.15       | 0.16  | <u>0.19</u> | 0.15       | 0.12       | 0.14      | 0.21       | 0.16  | 0.14             | 0.14             |
| Nickel                          | 4.1        | 7.0        | 4.0   | 5.6         | 4.4        | 3.9        | 4.9       | <u>8.2</u> | 5.9   | 5.5              | 6.2              |
| Selenium                        | 0.51       | 0.66       | 0.69  | 0.15        | 0.45       | 0.46       | 0.66      | 0.12       | 0.13  | 0.71             | 0.60             |
| Zinc                            | 92         | 102        | 79    | 76          | 100        | 80         | 100       | 97         | 76    | 78               | 78               |
| SEMI-VOLATILES (ppb, dry wt)    |            |            |       |             |            |            |           |            |       |                  |                  |
| Pyrene                          | ND         | ND         | ND    | 184         | 122        | 542        | ND        | ND         | 135   | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Benzo(a)anthracene              | ND         | ND         | ND    | ND          | ND         | <u>195</u> | ND        | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Chrysene                        | ND         | ND         | ND    | ND          | ND         | <u>482</u> | ND        | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Benzo(b)fluoranthene            | 124        | <u>237</u> | 146   | <u>374</u>  | <u>388</u> | <u>267</u> | 183       | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Benzo(k)fluoranthene            | ND         | 187        | ND    | 259         | 250        | 161        | 107       | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Benzo(a)pyrene                  | ND         | 113        | ND    | 269         | 256        | 289        | 146       | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| Total detectable PAHs           | 124        | 441        | 146   | 1024        | 896        | 1848       | 329       | ND         | 135   | 104 <sup>a</sup> | 99 <sup>a</sup>  |
| CHLORINATED PESTICIDES (ppb, dr | y weight)  |            |       |             |            |            |           |            |       |                  |                  |
| 4,4'-DDD                        | <u>23</u>  | 8.3        | 18    | <u>63</u>   | 16         | 7.1        | <u>25</u> | 2.2        | 11    | 3.8              | 1.3 <sup>a</sup> |
| 4,4'-DDE                        | 102        | 91         | 45    | 95          | 75         | 48         | 89        | 27         | 51    | 128              | 39               |
| 4,4'-DDT                        | 10         | 4.2        | 8.8   | ND          | 4.7        | 4.6        | ND        | ND         | ND    | ND               | 1.3 <sup>a</sup> |
| Total DDTs                      | 146        | 104        | 72    | 158         | 96         | 60         | 114       | 29         | 62    | 132              | 39               |
| Dieldrin                        | ND         | 2.9        | ND    | 2.2         | 3.0        | ND         | ND        | ND         | ND    | 1.3 <sup>a</sup> | 1.3 <sup>a</sup> |
| PCBs (ppb, dry weight)          |            |            |       |             |            |            |           |            |       |                  |                  |
| Aroclor 1254                    | ND         | 195        | ND    | 496         | 124        | ND         | 235       | ND         | ND    | 104 <sup>a</sup> | 99 <sup>a</sup>  |

Bold and underline values \* versus both LA2 and LA3.

Bold values \* versus LA3 only.

Underline values \* versus LA2 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.

Table 6. Mean Concentration of Detected Contaminants - Nereis viriens Bioaccumulation (Kinnetic Laboratories/ToxScan 1997).

|                                    |        |       |       | CHAN       | INEL DEE | PENING I   | PROJECT | - 1997 |       |                  |                  |
|------------------------------------|--------|-------|-------|------------|----------|------------|---------|--------|-------|------------------|------------------|
| Analytical Parameter               | FG-1A  | FG-1B | FG-2A | FG-2B      | FG-3A    | FG-3B      | FG-3C   | FM-1A  | FM-1B | LA2              | LA3              |
| METALS (mg/Kg, dry wt)             |        |       |       |            |          |            |         |        |       |                  |                  |
| Arsenic                            | 6.5    | 15    | 6.2   | 15         | 9.1      | 4.4        | 15      | 14     | 13    | 16               | 14               |
| Chromium                           | 1.2    | 0.67  | 1.8   | 2.1        | 1.5      | 0.18       | 0.46    | 1.4    | 1.5   | 11               | 3.8              |
| Copper                             | 6.6    | 6.1   | 9.5   | 8.1        | 7.9      | 3.4        | 8.8     | 7.2    | 7.0   | 9.1              | 8.0              |
| Lead                               | 1.1    | 0.41  | 0.59  | 0.76       | 0.61     | ND         | 1.1     | 1.3    | 0.95  | 0.55             | 0.21             |
| Mercury                            | 0.16   | 0.16  | 0.16  | ND         | 0.16     | 0.18       | 0.29    | ND     | ND    | 0.20             | 0.22             |
| Nickel                             | 1.4    | 0.3   | 2.3   | 2.4        | 0.82     | ND         | 0.36    | 1.6    | 1.9   | 10               | 4.5              |
| Selenium                           | 0.45   | 0.30  | 0.26  | 2.5        | 0.23     | 0.20       | 0.25    | 0.81   | 2.0   | 0.62             | 0.53             |
| Zinc                               | 120    | 98    | 184   | 121        | 134      | 86         | 145     | 108    | 111   | 135              | 120              |
| SEMI-VOLATILES (ppb, dry wt)       |        |       |       |            |          |            |         |        |       |                  |                  |
| Pyrene                             | ND     | ND    | ND    | ND         | ND       | <u>400</u> | ND      | ND     | ND    | 70 <sup>a</sup>  | 73 <sup>a</sup>  |
| Total detectable PAHs              | ND     | ND    | ND    | ND         | ND       | <u>400</u> | ND      | ND     | ND    | 70 <sup>a</sup>  | 73 <sup>a</sup>  |
| CHLORINATED PESTICIDES (ppb, dry w | eight) |       |       |            |          |            |         |        |       |                  |                  |
| Aldrin                             | ND     | ND    | ND    | 4.3        | 3.4      | ND         | ND      | 5.3    | ND    | 1.8 <sup>a</sup> | 1.7 <sup>a</sup> |
| 4,4'-DDD                           | 4.2    | 6.4   | ND    | ND         | 14       | <u>22</u>  | 17      | ND     | ND    | 1.8 <sup>a</sup> | 1.7 <sup>a</sup> |
| 4,4'-DDE                           | 18     | 18    | 13    | 14         | 21       | <u>33</u>  | 13      | 8.1    | 8.8   | 15               | 7.5              |
| 4,4'-DDT                           | 4.1    | ND    | 4.8   | ND         | 3.8      | 7.6        | ND      | ND     | ND    | 6.6              | 1.7 <sup>a</sup> |
| Total DDTs                         | 26     | 24    | 3.9   | 14         | 39       | 63         | 30      | 8.1    | 8.8   | 23               | 11               |
| Endrin                             | ND     | ND    | 22    | ND         | ND       | ND         | ND      | 2.1    | ND    | 4.2              | 1.7 <sup>a</sup> |
| Heptachlor                         | ND     | ND    | ND    | ND         | ND       | 5.7        | ND      | ND     | ND    | 1.8 <sup>a</sup> | 1.7 <sup>a</sup> |
| PCBs (ppb, dry weight)             |        |       |       |            |          |            |         |        |       |                  |                  |
| Aroclor 1254                       | ND     | 108   | ND    | <u>386</u> | 108      | 98         | ND      | ND     | ND    | 70 <sup>a</sup>  | 73 <sup>a</sup>  |

Bold and underline values \* versus both LA2 and LA3.

Bold values \* versus LA3 only.

Underline values \* versus LA2 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.



## UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

Region IX 75 Hawthorne Street San Francisco, CA 94105-3901

May 1, 1998

MAY 0 4 1998

CALIFORNIA COASTAL COMMISSION

#### MEMORANDUM

SUBJECT: Port of Los Angeles, Channel Deepening Program (Main Channel)

FROM:

Steven John, U.S. Environmental Protection Agency

TO:

Cheryl Conel, U.S. Army Corps of Engineers

The Port of Los Angeles has proposed a project for the deepening of the Main Channel as well as utility crossing removal, replacement and construction. The proposed project would deepen the present -45 feet MLLW channel to -50 feet MLLW, plus two foot overdepth, to accommodate deeper draft vessels. Approximately 4.5 million cubic yards of material would be dredged as part of the deepening project. The Port has proposed to dispose of 2 million cubic yards of coarsegrain dredged material within the Pier 400 Stage II landfill while the remaining 2.5 million cubic yards of material are proposed for ocean disposal.

In support of the proposed project, the Port has conducted physical and chemical evaluations and biological testing of the proposed dredged materials pursuant to the standard methods outlined in the joint Corps and EPA Testing Manual (Evaluation of Dredged Material Proposed for Ocean Disposal). A September 1997 report (Environmental Evaluation of Sediments for the Channel Deepening Program, Port of Los Angeles, Volumes I and II, prepared by Kinnetic Laboratories, Inc. and ToxScan, Inc.) presents the results of these evaluations.<sup>2</sup>

EXHIBIT NO. 4

11-42-90

The Port, in anticipation of a deficit of material with geotechnical properties suitable for inclusion in the Pier 400 landfill, evaluated the areas within the Main Channel characterized by deposits of predominantly coarse-grain materials to depths of -65 feet MLLW to support potential Main Channel sand mining efforts.

<sup>&</sup>lt;sup>2</sup> In addition to the September 1997 report, the Port has submitted additional support documents: Channel Deepening Project - draft (October 1997) and final (January 1998) Environmental Impact Report; Geotechnical Evaluation -- Main Channel Deepening Program (Fugro West, Inc., August 1997, Volumes I and II); and Final Report -- Chemical Analysis and Evaluation of Sediments. Stage 1 Pier 400. Main Channel Borrow Area, Directive VII (November 1996, Kinnetic Laboratories, Inc. and ToxScan, Inc.).

EPA's review of the proposed action was conducted in accordance with the Federal Guidelines (40 CFR 230) published pursuant to Section 404 of the Clean Water Act (CWA), Section 103 of the Marine Protection, Research and Sanctuaries Act (MPRSA), and Section 10 of the Rivers and Harbors Act.

To facilitate the evaluation of the dredged materials in the project area these materials were split into three distinct categories: (1) coarse-grain sediments (predominantly sand and silty sand with interspersed layers of coarse and fine-grain sediments); (2) fine-grain sediments (silt, sandy silt, clay) with interspersed layers of coarse and fine-grain sediments; and (3) formation material of Malaga Mudstone (silt) deposits and Timms Point Silt (silt, sandy silt, silty sand) deposits. Coarse-grain materials, which are proposed for inclusion in the Pier 400 landfill, were evaluated only for bulk and elutriate chemistry — no biological testing was conducted on these materials. As the fine-grain and formation materials were determined not to be suitable for structural fill for Pier 400, these materials were evaluated for ocean disposal with bulk chemistry and full Green Book biological testing.

Coarse-Grain Material -- these test areas were split into a top layer (existing elevation down to -52 feet MLLW, representing the proposed deepening project) and a bottom layer (-52 feet to -65 feet MLLW, for the purposes of sand mining material for the Pier 400 landfill). Bulk and elutriate chemistry testing of these proposed dredged materials generally showed low levels of heavy metal contamination and moderate organic contaminant levels in the top layer with even lower metal and organic compound levels in the lower layer. EPA believes all identified dredged materials from the coarse-grain test areas (i.e., CG-2, CG-3, and CG-4) are suitable for use in the Pier 400 landfill. Were these sediments to be proposed for unconfined aquatic disposal, EPA would recommend the sediments be evaluated by full Green Book biological testing.

Fine-Grain Material -- in general, the sediments from the fine-grain test areas had elevated levels of both heavy metals (copper, mercury, nickel, and lead were the most common metals) and organic compounds (DDT, DDE, PCBs being the most common). While the level of metal and organic analytes was consistently greater than for the coarse-grain materials, the levels were generally intermediate between ERL and ERM values.

In the suspended particulate phase bioassay, none of the seven fine-grain composites (FG-1A,B; FG-2A,B; FG-3A,B,C) produced significant toxicity in *Menidia* or *Mysidopsis*. While four of the composites (FG-1A,B; FG-2B; FG-3B) had significant decreased *Mytilus* survival, survival was generally near 87%. The Limiting Permissible Concentration (LPC) was not exceeded for any of these materials. In the solid phase bioassay, none of the seven fine-grain composites produced any significant increased mortality in *Nepthys* or *Mysidopsis* and only FG-2B produced significantly lower survival in *Rhepoxynius* (compared to the LA2 reference site, but not the LA3 reference site). The LPC was exceeded only for the FG-2B materials (due to a greater than 20% difference in survival between the test site and the LA2 reference site).

THE SHED WITH THE PROPERTY OF THE PARTY OF T

None of the seven fine-grain test areas composites produced substantially elevated bioaccumulation of metals or organic compounds. In general, bioaccumulation levels for lead, copper, mercury, DDD and DDE (for this evaluation these were the most commonly bioaccumulated contaminants), for *Macoma* and *Nepthys*, were in the range of 1.5 to 3 times those in tissues from LA2 and LA3 reference site specimens. Test area FG-2B had the widest range of contaminants found to bioaccumulate, generally to levels greater than found for the other fine-grain test areas.

Based on data from the bulk chemistry, the bioassays and the bioaccumulation evaluations, EPA believes that all the proposed dredged materials from test areas FG-1A, FG-1B, FG-2A, FG-3A, FG-3B, and FG-3C are suitable for aquatic disposal at either the LA2 or LA3 ocean disposal sites (there was no substantial difference in the bioassay or bioaccumulation results for these materials when compared to either the LA2 or the LA3 reference sites).

Due to the significant bioassay results and the wider range and higher bioaccumulation levels for test area FG-2B composite, EPA believes some materials in this test area are unsuitable for ocean disposal. Based on the bulk chemistry results for the individual core sample, an area of significantly elevated levels of contamination can be delineated to separate the remaining area of FG-2B which has substantially lower levels of metals and organic analytes. The area around test cores FG2-3 and FG2-8 (westward of a line drawn midway between FG2-6 and FG2-7 and between FG2-8 and FG2-9, then southward of a line drawn midway between FG2-8 and FG2-10) is unsuitable for ocean disposal or unconfined aquatic disposal. All remaining dredged materials in this test area are determined to be suitable for ocean disposal (see attachment to this memo for diagram delineation suitable and unsuitable areas in FG-2B).

DWP Pipeline Crossing -- The installation of a reclaimed water pipeline crossing the Turning Basin (test area FG-1B) will require dredging a trench to -70 feet MLLW, with two foot overdepth, generating between 100,000 and 150,000 cubic yards of material. Material from the channel edges resulted in significant mortality in the solid phase bioassay (DWP-VA) and significantly elevated bioaccumulation of several organic compounds (DWP-VB). Virgin dredged material (DWP-GEO; -52 to -72 feet MLLW) resulted in no significant mortality in the suspended particulate phase or solid phase bioassays and no elevated bioaccumulation of any analyte. Based on these data, EPA believes dredged materials from DWP-VA and DWP-VB are not suitable for ocean or unconfined aquatic disposal. While the dredged materials from DWP-GEO are suitable for ocean disposal, these materials are predominantly sand and appear to be suitable for inclusion in the Pier 400 landfill (similar in nature to the identified coarse-grain fill materials from the Main Channel). EPA recommends that POLA investigate the beneficial reuse of these materials as structural fill.

Formation Material -- the bulk chemistry results for these materials showed metal levels (cadmium, chromium, copper, mercury, nickel, and zinc) to be relatively highly elevated.

significantly more so than for either the coarse- or fine-grain materials from the inner reaches of the Main Channel. Organic compounds (DDT, DDE, and PCBs) were elevated to relatively high levels and were greater than for other dredged materials in the Main Channel. Supplemental sampling of these materials demonstrated that the metals were found primarily in the formation (lower layer) materials while the organic compounds were distributed primarily in the depositional (top layer) materials.

In the suspended particulate phase bioassay, neither of the formation material test areas (FM-1A or B) produced significant toxicity in *Menidia* or *Mysidopsis*. Both test areas composites had significant decreased *Mytilus* survival, however the LPC was not exceeded for either of these test areas. In the solid phase bioassay, test area FM-1A had no significant decrease in survival for either *Rhepoxynius* or *Mysidopsis*, but *Nepthys* survival was significantly different from both reference sites. The survival differences were less than 20% so the LPC was not exceeded. In test area FM-1B, there was no observed significant toxicity to *Nepthys* or *Mysidopsis*, but *Rhepoxynius* survival was significantly lower for the test materials than for the LA2 reference site. Due to these significant results, the LPC was exceeded for LA2.

Macoma and Nepthys specimens exposed to materials from FM-1A showed slight bioaccumulation of copper, mercury and lead on the order of 1.5 times that of the reference site specimens. There was no statistically significant bioaccumulation of any analyte for specimens exposed to materials from test area FM-1B.

While the formation material underlying the depositional layer of these test areas has elevated levels of metals, it appears these are from non-anthropogenic sources and are not subject to bioaccumulation. These results are similar to previous Port of Los Angeles evaluations on Malaga Mudstone and Timms Point Silt deposits in which EPA approved ocean disposal of these types of materials. EPA believes that the formation materials in both test area FM-1A and B are suitable for ocean or unconfined aquatic disposal.

Based on the elevated levels of organic compounds in the depositional layer, and the lack of significant bioassay results from previous evaluations of formation materials similar to those found in the project area, EPA believes the significant bioassay results for the FM test areas are due to the depositional layers. Therefore, EPA believes that these depositional materials are not suitable for ocean disposal and should be disposed of at an approved upland sites or a confined aquatic disposal facility.

Bathymetric Surveys -- For the subsection of test area FG-1B determined not to be suitable for ocean disposal, EPA recommends these materials be dredged and disposed of prior to dredging the remaining FG-1B materials determined to be suitable for ocean disposal. In test areas FG-1B, FM-1A and FM-1B, EPA recommends that a bathymetric survey be conducted following removal of the unsuitable material and prior to dredging of the materials in these test areas

determined to be suitable for ocean disposal. Final approval by the Corps, with EPA concurrence, for ocean disposal of the suitable material from these three test areas should be pending review of this bathymetry survey and demonstration that all unsuitable materials have been removed from the dredge site.

Summary -- Based on the data provided by the Port of Los Angeles, EPA believes the dredged materials in the western portion of test area FG-2B, the top layer depositional material in FM-1A and B, and the materials from DWP-VA and VB are not suitable for ocean disposal. EPA concurs on inclusion of all the coarse-grain dredged materials in Pier 400. Pending demonstration with all other relevant sections of CWA and MPRSA, including evaluation of beneficial reuse of these proposed dredge materials, EPA concurs provisionally on ocean disposal for all the remaining material (identified above) evaluated as part of the Main Channel deepening project.

Thank you for the opportunity to review and comment on this proposed action. If you have any questions about EPA's comments, please contact me at 213/452-3806. EPA's final concurrence on the suitability of dredged materials from the proposed project for ocean disposal will be included in our comments on the Corps Public Notice.

attachment

cc: POLA

## Attachment

## Area FG-2B



Unsuitable

Suitable



## UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

REGION IX
75 Hawthorne Street
San Francisco, CA 94105



CALITY. COASTAL CO.VII.L.

May 14, 1998

#### **MEMORANDUM**

SUBJECT: Port of Los Angeles Channel Decpening Program (Main Channel)

FROM: Steven John, U.S. Environmental Protection Agency

TO: Cheryl Conel, U.S. Army Corps of Engineers

This Memorandum amends EPA's May 1, 1998 memo regarding the suitability of dredged materials from the proposed Main Channel deepening project for unconfined aquatic disposal at either the LA2 or LA3 ocean disposal sites.

EPA's previous recommendation regarding suitability for unconfined aquatic disposal of dredged materials from the Formation Material test areas (FM-1A and FM-1B) was that the formation materials were suitable for unconfined aquatic disposal while the depositional materials were not suitable for ocean disposal. EPA has conducted an additional evaluation of the data submitted by the Port of Los Angeles to delineate any suitable material in the upper layer. Based on this evaluation, EPA has identified two pockets of material in the depositional layer that are suitable for unconfined aquatic disposal. These areas are:

- (1) the eastern portion of FM-1A from a line drawn midway between FM1-1 and FM1-2 and between FM1-3 and FM1-4, then northeastward in the sharper edge at a point midway between FM1-3 and FM1-5; and,
- (2) the western portion of FM-1B from a line drawn midway between FM1-9 and FM1-10 and between FM1-7 and FM1-8, then southwestward to the channel edge at a point midway between FM1-6 and FM1-8.

The attached figure provides a diagram of the FM test areas and identifies the two areas of the depositional layer determined to be suitable for unconfined aquatic disposal. The remaining depositional layer dredge material within the FM test areas is unsuitable for ocean disposal.

1The data submitted by the Port does not define the actual elevations (relative to MLLW) delineating the depositional and formation layers. EPA recommends that the Port be required to provide this information for inclusion in the Corps' Public Notice.

EXHIBIT NO. 5
APPLICATION NO.

CC-42-98

All the other recommendations in EPA's May 1, 1998 memorandum remain effective. If you have any questions about this re-evaluation of the depositional layer of the formation material test areas, please contact me at 213/452-3806. EPA's final concurrence on the suitability of dredged materials from the proposed deepening project for ocean disposal will be included in our comments on the Corps Public Notice.

attachment

cc: POLA CCC

Attachment

Delineation of Suitable and Unsuitable Dredged Materials (Depositional Layer)

Test Areas FM-1A and FM-1B



## **APPENDIX A-2**

RESULTS OF PHYSICAL, CHEMICAL, AND BIOASSAY TESTING OF SEDIMENTS COLLECTED FOR THE PORT OF LOS ANGELES MODIFIED CHANNEL DEEPENING PROGRAM (MEC Analytical Systems, Inc., 2001a)



Figure 2. Current and previous sampling locations.

Table 1. Core Locations: MEC - September 2001 (MEC, 2001a)

## MODIFIED CHANNEL DEEPENING - SEPTEMBER 2001

| Core ID       | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
|---------------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
| FG2-6         | 33° 45.436'          | 118° 16.640'          | -44.0 to -44.2                       | 9.0 to 11.5                   | 8.0 to 11.0                    | -52.0 to -55.0                      |
| FG2-8         | 33° 45.524'          | 118° 16.570'          | -48.3                                | 4.0 to 4.5                    | 3.7 to 4.5                     | -52.0 to -52.8                      |
| FM1-11S       | 33° 43.036'          | 118° 16.248'          | -22.0                                | 6.0 to 7.5                    | 0.0 to 7.0                     | -22.0 to -29.0                      |
| FM1-12S       | 33° 43.151'          | 118° 16.289'          | -19.5                                | 5.5 to 7.0                    | 0.0 to 7.0                     | -19.5 to -27.0                      |
| LA2-REFERENCE | 33° 33.200'          | 118° 10.800'          | NA                                   | NA                            | NA                             | NA                                  |
| LA3-REFERENCE | 33° 26.000'          | 117° 55.000'          | NA                                   | NA                            | NA                             | NA                                  |

NA = Not applicable.

Table 2. Bulk Sediment Chemistry Results (MEC, 2001a). (Page 1 of 2)

|                                                       | MODIFIED CHANNEL DEEPENING - SEPTEMBER 2001 |                             |                |                             |       |             |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|---------------------------------------------|-----------------------------|----------------|-----------------------------|-------|-------------|--|--|--|--|--|--|--|--|
| Analytical Parameter                                  | FM1-12S<br>TOP                              | FM1-12S<br>BOT-CLAY<br>PLUG | FM1-11S<br>TOP | FM1-11S<br>BOT-CLAY<br>PLUG | FG2-6 | FG2-8       |  |  |  |  |  |  |  |  |
| GRAIN SIZE (% dry)                                    |                                             |                             |                |                             |       |             |  |  |  |  |  |  |  |  |
| Sand/Gravel (>0.063 mm)                               | 74.6                                        | 43.1                        | 69.3           | 20.3                        | 77.9  | 32.6        |  |  |  |  |  |  |  |  |
| Silt (0.004 mm - 0.063 mm)                            | 18.1                                        | 36.0                        | 24.0           | 47.7                        | 16.3  | 38.7        |  |  |  |  |  |  |  |  |
| Clay (<0.004 mm)                                      | 7.4                                         | 20.9                        | 6.8            | 32.1                        | 5.9   | 28.7        |  |  |  |  |  |  |  |  |
| SEDIMENT CONVENTIONALS                                |                                             |                             |                |                             |       |             |  |  |  |  |  |  |  |  |
| Ammonia (mg/Kg)                                       | 12.1                                        | 82                          | 10.3           | 102                         | 4.7   | 26 - 28*    |  |  |  |  |  |  |  |  |
| Total sulfides (mg/Kg, dry)                           | 5.5                                         | 0.1U                        | 4.1            | 2.1                         | 3.5   | 2.9         |  |  |  |  |  |  |  |  |
| Total Volatile Solids (%)                             | NA                                          | NA                          | NA             | NA                          | NA    | NA          |  |  |  |  |  |  |  |  |
| Water soluble sulfides (mg/Kg, dry)                   | 0.1U                                        | 0.1U                        | 0.1U           | 0.2U                        | 0.1U  | 0.1U        |  |  |  |  |  |  |  |  |
| Oil and Grease (mg/Kg, dry)                           | 24                                          | 9.9                         | 20             | 8.2U                        | 20    | 15.3        |  |  |  |  |  |  |  |  |
| TRPH (mg/Kg, dry)                                     | 22                                          | 8.7                         | 18             | 8.2U                        | 19    | 13.3        |  |  |  |  |  |  |  |  |
| % Solids (%)                                          | 72.8                                        | 64.5                        | 72.8           | 61.0                        | 79.0  | 72.0        |  |  |  |  |  |  |  |  |
| TOC (%)                                               | 1.03                                        | 2.99                        | 1.03           | 4.96                        | 0.05  | 0.19        |  |  |  |  |  |  |  |  |
| METALS (mg/Kg, dry wt)                                | 1.00                                        | 2.00                        | 1.00           | 1.00                        | 0.00  | 0.10        |  |  |  |  |  |  |  |  |
| Arsenic                                               | 5.1                                         | 9.9                         | 4.5            | 16.6                        | 4.3   | 22.1        |  |  |  |  |  |  |  |  |
| Cadmium                                               | 0.3                                         | 1.2                         | 0.4            | 2.8                         | 0.1U  | 0.3         |  |  |  |  |  |  |  |  |
| Chromium                                              | 16                                          | 49.1                        | 13             | 81.6                        | 11.0  | 36.7        |  |  |  |  |  |  |  |  |
| Copper                                                | 62.7                                        | 51.6                        | 38.0           | 79.9                        | 6.9   | 45.8        |  |  |  |  |  |  |  |  |
| Lead                                                  | 6.7                                         | 5.6                         | 7.1            | 6.7                         | 5.6   | 17.2        |  |  |  |  |  |  |  |  |
| Mercury                                               | 0.09                                        | 0.08                        | 0.10           | 0.19                        | 0.08  | 0.11        |  |  |  |  |  |  |  |  |
| Nickel                                                | 17                                          | 61.9                        | 13             | 87.6                        | 14    | 41.7        |  |  |  |  |  |  |  |  |
| Selenium                                              | 0.3                                         | <u>4.9</u>                  | 0.2            | 9.4                         | 0.1U  | 0.3         |  |  |  |  |  |  |  |  |
| Silver                                                | 0.1U                                        | 0.5                         | 0.2<br>0.1U    | 0.8                         | 0.1U  | 0.5<br>0.1U |  |  |  |  |  |  |  |  |
|                                                       | 58                                          | 119                         | 55             | 1 <b>53</b>                 | 39    | 109         |  |  |  |  |  |  |  |  |
| Zinc ORGANOTINS (ppb, dry weight)                     | 30                                          | 119                         | 55             | 153                         | 39    | 109         |  |  |  |  |  |  |  |  |
|                                                       | 2.7U                                        | 3.1U                        | 2.7U           | 3.3U                        | 2.5U  | 2.8U        |  |  |  |  |  |  |  |  |
| Dibutyltin Manabutyltin                               | 2.7U<br>2.7U                                | 3.1U<br>3.1U                | 2.7U<br>2.7U   | 3.3U                        | 2.5U  | 2.8U        |  |  |  |  |  |  |  |  |
| Monobutyltin Tetrabutyltin                            | NA                                          | NA                          | NA             | NA                          | NA    | NA          |  |  |  |  |  |  |  |  |
| •                                                     | 1.4U                                        | 1.6U                        | 1.4U           | 1.6U                        | 1.3U  | 1.4U        |  |  |  |  |  |  |  |  |
| Tributyltin  CHLORINATED PESTICIDES (ppb, dry weight) | 1.40                                        | 1.00                        | 1.40           | 1.00                        | 1.30  | 1.40        |  |  |  |  |  |  |  |  |
| Aldrin                                                | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| alpha-BHC                                             | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| beta-BHC                                              | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| delta-BHC                                             | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| gamma-BHC (lindane)                                   | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| Chlordane                                             | 14U                                         | 16U                         | 14U            | 16U                         | 13U   | 14U         |  |  |  |  |  |  |  |  |
| 4,4'-DDD                                              | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| 4,4'-DDE                                              | 7                                           | 3U                          | 8              | 3U - <b>4.4</b> *           | 3U    | 3U          |  |  |  |  |  |  |  |  |
| 4,4'-DDT                                              | 3U                                          | 3U                          | 3U             | 3U                          | 3U    | 3U          |  |  |  |  |  |  |  |  |
| Total DDTs                                            | 7                                           | 3U                          | 8              | 3U - <b>4.4</b>             | 3U    | 3U          |  |  |  |  |  |  |  |  |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

<sup>\*</sup> Duplicate analysis produced different results

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Table 2. Bulk Sediment Chemistry Results (MEC, 2001a). (Page 2 of 2)

|                                               | MODIFIED CHANNEL DEEPENING - SEPTEMBER 200 |                             |                |                             |            |            |  |  |  |  |  |  |  |  |
|-----------------------------------------------|--------------------------------------------|-----------------------------|----------------|-----------------------------|------------|------------|--|--|--|--|--|--|--|--|
| Analytical Parameter                          | FM1-12S<br>TOP                             | FM1-12S<br>BOT-CLAY<br>PLUG | FM1-11S<br>TOP | FM1-11S<br>BOT-CLAY<br>PLUG | FG2-6      | FG2-8      |  |  |  |  |  |  |  |  |
| CHLORINATED PESTICIDES (Continued)            |                                            |                             |                |                             |            |            |  |  |  |  |  |  |  |  |
| Dieldrin                                      | 3                                          | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endosulfan I                                  | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endosulfan II                                 | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endosulfan sulfate                            | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endrin                                        | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endrin Aldehyde                               | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Endrin Ketone                                 | NA                                         | NA                          | NA             | NA                          | NA         | NA         |  |  |  |  |  |  |  |  |
| Heptachlor                                    | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Heptachlor epoxide                            | 3U                                         | 3U                          | 3U             | 3U                          | 3U         | 3U         |  |  |  |  |  |  |  |  |
| Toxaphene                                     | 34U                                        | 47U                         | 34U            | 49U                         | 32U        | 42U        |  |  |  |  |  |  |  |  |
| Methoxychor                                   | 3U                                         | 6U                          | 3U             | 7U                          | 3U         | 6U         |  |  |  |  |  |  |  |  |
| PCBs (ppb, dry weight)                        |                                            |                             |                |                             |            |            |  |  |  |  |  |  |  |  |
| PCB 1242                                      | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| PCB 1248                                      | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| PCB 1254                                      | 38                                         | 16U                         | 39             | 16U - <b>36*</b>            | 82         | 14U        |  |  |  |  |  |  |  |  |
| PCB 1260                                      | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 176        |  |  |  |  |  |  |  |  |
| Total PCBs                                    | 38                                         | 16U                         | 39             | 16U                         | 82         | 176        |  |  |  |  |  |  |  |  |
| SEMI-VOLATILES (ppb, dry wt)                  |                                            |                             |                |                             | -          | -          |  |  |  |  |  |  |  |  |
| Naphthalene                                   | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Acenaphthylene                                | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Acenaphthene                                  | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Fluorene                                      | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Phenanthrene                                  | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Anthracene                                    | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Fluoranthene                                  | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
|                                               | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Pyrene  Page (a) anthropous                   |                                            |                             |                |                             |            |            |  |  |  |  |  |  |  |  |
| Benzo(a)anthracene                            | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Chrysene                                      | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Benzo(b)fluoranthene                          | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 31         |  |  |  |  |  |  |  |  |
| Benzo(k)fluoranthene                          | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Benzo(a)pyrene                                | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Indeno[1,2,3-CD]pyrene Dibenzo(a,h)anthracene | 14U<br>14U                                 | 16U<br>16U                  | 14U<br>14U     | 16U<br>16U                  | 13U<br>13U | 14U<br>14U |  |  |  |  |  |  |  |  |
| Benzo[ghi]perylene                            | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 14U        |  |  |  |  |  |  |  |  |
| Benzo(e)pyrene                                | NA                                         | NA                          | NA             | NA                          | NA         | NA         |  |  |  |  |  |  |  |  |
| Total detectable PAHs                         | 14U                                        | 16U                         | 14U            | 16U                         | 13U        | 31         |  |  |  |  |  |  |  |  |
| Total Phthalates                              | 33                                         | 16U                         | 27U            | 16U                         | 25U        | 29         |  |  |  |  |  |  |  |  |
| Total Phenols                                 | 27U - 137L                                 | J 31U - 155U                | 27U - 137U     | 33U - 164U :                | 25U - 127U | 28U - 139U |  |  |  |  |  |  |  |  |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

<sup>\*</sup> Duplicate analysis produced different results

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Table 3. Toxicity Table (MEC, 2001a).

|                        | М     | ODIFIED C | HANNEL D | EEPENIN | NG - SEPTE | MBER 2001 |
|------------------------|-------|-----------|----------|---------|------------|-----------|
|                        | FG2-6 | FM1-12S   | FM1-11S  | LA2     | LA3        | CONTROL   |
| Water Column Bioassays |       |           |          |         |            |           |
| (LC50 / EC50)          |       |           |          |         |            |           |
| Mytilus Survival       | >100% | >100%     | >100%    | NA      | NA         | >100%     |
| Mytilus Development    | >100% | >100%     | >100%    | NA      | NA         | >100%     |
| Mysidopsis Survival    | >100% | >100%     | >100%    | NA      | NA         | >100%     |
| Menidia Survival       | >100% | >100%     | >100%    | NA      | NA         | >100%     |
| Benthic Bioassays      |       |           |          |         |            |           |
| (% Survival)           |       |           |          |         |            |           |
| Rhepoxynius            | NT    | NT        | NT       | NT      | NT         | NT        |
| Eohaustorius           | 83%   | 95%       | 93%      | 90%     | 66%        | 93%       |
| Ampelisca              | NT    | NT        | NT       | NT      | NT         | NT        |
| Nephtys                | 90%   | 95%       | 88%      | 94%     | 94%        | 95%       |
| Mysidopsis             | NT    | NT        | NT       | NT      | NT         | NT        |

Bolded values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2.

Bolded and underlined values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2 and LA3.

NT = Not tested in this program.

Table 4. Mean Concentration of Detected Contaminants - Macoma nasuta Bioaccumulation (MEC, 2001a).

|                                     | N           | ODIFIED CH | ANNEL DEEP | ENING - 20     | 01             |
|-------------------------------------|-------------|------------|------------|----------------|----------------|
| Analytical Parameter                | FG2-6       | FM1-12S    | FM1-11S    | LA2            | LA3            |
| METALS (mg/Kg, dry wt)              |             |            |            |                |                |
| Arsenic                             | 2.1         | 2.5        | 2.4        | 2.1            | 2.1            |
| Chromium                            | 0.28        | 0.08       | 0.08       | 0.30           | 0.32           |
| Copper                              | 0.88        | 1.4        | 1.4        | 1.1            | 0.86           |
| Lead                                | 0.17        | 0.22       | 0.24       | 0.14           | 0.12           |
| Mercury                             | 0.015       | 0.009      | 0.011      | 0.014          | 0.014          |
| Nickel                              | 0.38        | 0.44       | 0.42       | 0.40           | 0.50           |
| Selenium                            | 0.16        | 0.24       | 0.26       | 0.18           | 0.20           |
| Zinc                                | 8.4         | 10.6       | 9.9        | 7.6            | 8.4            |
| SEMI-VOLATILES (ppb, dry wt)        |             |            |            |                |                |
| Pyrene                              | 10.7        | ND         | ND         | 6.12           | 10.5           |
| Benzo(b)fluoranthene                | 12.9        | ND         | ND         | 5 <sup>a</sup> | 5 <sup>a</sup> |
| Total detectable PAHs               | <u>22.6</u> | ND         | ND         | 6.12           | 10.5           |
| CHLORINATED PESTICIDES (ppb, dry we | ight)       |            |            |                |                |
| 4,4'-DDE                            | 3.4         | 7.3        | 5.6        | 10.0           | 4.5            |

Bold and underline values \* versus both LA2 and LA3.

Bold values \* versus LA3 only.

Underline values \* versus LA2 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.

Table 5. Mean Concentration of Detected Contaminants - Nephtys caecoides Bioaccumulation (MEC, 2001a).

|                                       | MODIFIED CHANNEL DEEPENING - 200 |             |             |                 |                   |  |  |  |  |  |
|---------------------------------------|----------------------------------|-------------|-------------|-----------------|-------------------|--|--|--|--|--|
| Analytical Parameter                  | FG2-6                            | FM1-12S     | FM1-11S     | LA2             | LA3               |  |  |  |  |  |
| METALS (mg/Kg, dry wt)                |                                  |             |             |                 |                   |  |  |  |  |  |
| Arsenic                               | 5.1                              | 4.5         | 4.7         | 4.1             | 4.5               |  |  |  |  |  |
| Cadmium                               | 0.35                             | 0.30        | 0.30        | 0.28            | 0.27              |  |  |  |  |  |
| Copper                                | 2.0                              | 1.5         | 1.6         | 2.0             | 1.9               |  |  |  |  |  |
| Lead                                  | 0.15                             | 0.30        | 0.20        | 0.14            | 0.17              |  |  |  |  |  |
| Mercury                               | 0.008                            | ND          | 0.005       | 0.023           | 0.05 <sup>a</sup> |  |  |  |  |  |
| Nickel                                | 0.45                             | 0.40        | 0.34        | 0.48            | 0.4               |  |  |  |  |  |
| Selenium                              | 0.68                             | 0.62        | 0.60        | 0.56            | 0.53              |  |  |  |  |  |
| Zinc                                  | <u>36.3</u>                      | <u>36.6</u> | <u>35.1</u> | 31.4            | 31.2              |  |  |  |  |  |
| CHLORINATED PESTICIDES (ppb, dry weig | jht)                             |             |             |                 |                   |  |  |  |  |  |
| 4,4'-DDE                              | 6.27                             | 5.13        | 7.36        | 11.9            | 5.69              |  |  |  |  |  |
| PCBs (ppb, dry weight)                |                                  |             |             |                 |                   |  |  |  |  |  |
| Aroclor 1254                          | <u>69</u>                        | ND          | ND          | 25 <sup>a</sup> | 25 <sup>a</sup>   |  |  |  |  |  |

Bold and underline values \* versus both LA2 and LA3.

Bold values \* versus LA3 only.

Underline values \* versus LA2 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.



## **APPENDIX B-1**

# CHEMICAL AND BIOLOGICAL ANALYSIS OF SEDIMENTS IN THE SOUTHWEST SLIP PROJECT AREA

(Kinnetic Laboratories/ToxScan, 2001a)

## Southwest Slip Fill Areas



Table 1. Core Locations: Southwest Basin 2001.

|           |                      |                       | SOUTHWES1                            | BASIN 2001                    |                                |                                     |
|-----------|----------------------|-----------------------|--------------------------------------|-------------------------------|--------------------------------|-------------------------------------|
| Core ID   | Latitude<br>(NAD 83) | Longitude<br>(NAD 83) | Seafloor<br>Elevation<br>(feet MLLW) | Length<br>Recovered<br>(feet) | Sampling<br>Interval<br>(feet) | Sampling<br>Interval<br>(feet MLLW) |
| Subunit A |                      |                       |                                      |                               |                                | <u> </u>                            |
| A1-1      | 33° 45.171'          | 118° 16.428'          | -44.8                                | 16.5                          | 0.0 to 5.5                     | -44.8 to -50.3                      |
|           |                      |                       |                                      |                               | 5.5 to 16.5                    | -50.3 to -61.3                      |
| A1-2      | 33° 45.037'          | 118° 16.392'          | -46.0                                | 15.6                          | 0.0 to 5.0                     | -46.0 to -51.0                      |
|           |                      |                       |                                      |                               | 5.0 to 15.6                    | -51.0 to -61.6                      |
| Subunit B |                      |                       |                                      |                               |                                |                                     |
| B-1       | 33° 45.342'          | 118° 16.658'          | -45.6                                | 10.5                          | 0.0 to 5.0                     | -45.6 to -50.6                      |
|           |                      |                       |                                      |                               | 5.0 to 10.5                    | -50.6 to -56.1                      |
| B-2       | 33° 45.314'          | 118° 16.738'          | -36.8                                | 15.5                          | 0.0 to 5.0                     | -36.8 to -41.8                      |
|           |                      |                       |                                      |                               | 5.0 to 15.5                    | -41.8 to -52.3                      |
| B-3       | 33° 45.294'          | 118° 16.792'          | -32.3                                | 18.8                          | 0.0 to 5.0                     | -32.3 to -37.3                      |
|           |                      |                       |                                      |                               | 5.0 to 18.8                    | -37.3 to -51.1                      |
| B-4       | 33° 45.266'          | 118° 16.897'          | -43.0                                | 11.0                          | 0.0 to 5.0                     | -43.0 to -48.0                      |
|           |                      |                       |                                      |                               | 5.0 to 11.0                    | -48.0 to -54.0                      |
| B-5       | 33° 45.290'          | 118° 16.903'          | -40.0                                | 13.0                          | 0.0 to 5.0                     | -40.0 to -45.0                      |
|           |                      |                       |                                      |                               | 5.0 to 13.0                    | -45.0 to -53.0                      |
| B-6       | 33° 45.288'          | 118° 16.933'          | -27.3                                | 13.0                          | 0.0 to 6.4                     | -27.3 to -33.7                      |
|           |                      |                       |                                      |                               | 6.4 to 13.0                    | -33.7 to -40.3                      |
| Subunit C |                      |                       |                                      |                               |                                |                                     |
| C-1       | 33° 45.328'          | 118° 16.982'          | -31.8                                | 12.5                          | 0.0 to 5.0                     | -31.8 to -36.8                      |
|           |                      |                       |                                      |                               | 5.0 to 12.5                    | -36.8 to -44.3                      |
| C-2       | 33° 45.287'          | 118° 16.974'          | -33.0                                | 13.0                          | 0.0 to 5.2                     | -33.0 to -38.2                      |
|           |                      |                       |                                      |                               | 5.2 to 13.0                    | -38.2 to -46.0                      |
| C-3       | 33° 45.290'          | 118° 17.019'          | -36.0                                | 12.0                          | 0.0 to 5.0                     | -36.0 to -41.0                      |
|           |                      |                       |                                      |                               | 5.0 to 12.0                    | -41.0 to -48.0                      |
| C-4       | 33° 45.327'          | 118° 17.037'          | -28.8                                | 12.5                          | 0.0 to 6.7                     | -28.8 to -35.5                      |
|           |                      |                       |                                      |                               | 6.7 to 12.5                    | -35.5 to -41.3                      |
| C-5       | 33° 45.317'          | 118° 17.078'          | -20.0                                | 12.5                          | 0.0 to 7.0                     | -20.0 to -27.0                      |
|           |                      |                       |                                      |                               | 7.0 to 12.5                    | -27.0 to -32.5                      |
| C-6       | 33° 45.282'          | 118° 17.076'          | -31.0                                | 12.4                          | 0.0 to 5.0                     | -31.0 to -36.0                      |
|           |                      |                       |                                      |                               | 5.0 to 12.4                    | -36.0 to -43.4                      |
| C-7       | 33° 45.260'          | 118° 17.007'          | -34.7                                | 12.5                          | 0.0 to 6.5                     | -34.7 to -41.2                      |
|           |                      |                       |                                      |                               | 6.5 to 12.5                    | -41.2 to -47.2                      |
| C-8       | 33° 45.251'          | 118° 17.064'          | -42.5                                | 12.5                          | 0.0 to 6.0                     | -42.5 to -48.5                      |
|           |                      |                       |                                      |                               | 6.0 to 12.5                    | -48.5 to 55.0                       |
| C-9       | 33° 45.323'          | 118° 17.097'          | -19.8                                | 12.5                          | 0.0 to 7.4                     | -19.8 to -27.2                      |
|           |                      |                       |                                      |                               | 7.4 to 12.5                    | -27.2 to -32.3                      |
| Subunit D |                      |                       |                                      |                               |                                |                                     |
| D-1       | 33° 45.305'          | 118° 17.110'          | -21.3                                | 7.5                           | 0.0 to 7.5                     | -21.3 to -28.8                      |
| D-2       | 33° 45.278'          | 118° 17.143'          | -21.2                                | 7.4                           | 0.0 to 7.4                     | -21.2 to -28.6                      |
| D-3       | 33° 45.288'          | 118° 17.198'          | -18.8                                | 7.5                           | 0.0 to 7.5                     | -18.8 to -26.3                      |
| D-4       | 33° 45.253'          | 118° 17.216'          | -12.5                                | 7.5                           | 0.0 to 7.5                     | -12.5 to -20.0                      |
| D-5       | 33° 45.267'          | 118° 17.275'          | -1.3                                 | 7.5                           | 0.0 to 7.5                     | -1.3 to -8.8                        |
| D-6       | 33° 45.281'          | 118° 17.318'          | -1.3                                 | 5.9                           | 0.0 to 5.9                     | -1.3 to -7.2                        |
| D-7       | 33° 45.239'          | 118° 17.131'          | -48.0                                | 7.0                           | 0.0 to 7.0                     | -48.0 to -55.0                      |
| D-8       | 33° 45.306'          | 118° 17.144'          | -17.0                                | 7.6                           | 0.0 to 7.6                     | -17.0 to -24.6                      |
| D-9       | 33° 45.289'          | 118° 17.228'          | -15.8                                | 7.6                           | 0.0 to 7.6                     | -15.8 to -23.4                      |
| SW5       | 33° 45.211'          | 118° 16.817'          | -16.0                                | 3.0                           | 0.0 to 3.0                     | -16.0 to -19.0                      |

Table 2. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Program - Southwest Slip Project. Vibracore Samples. (Page 1 of 4)

| Analytical Parameter                     | Comp<br>A1 Top | Comp<br>A1 Bot | Comp<br>B Top |              | Comp<br>C Top    | Comp<br>C Bot | Comp<br>D    | A1-1<br>Top  | A1-1<br>Bot  | A1-2<br>Top  | A1-2<br>Bot  | B1 Top       | B1 Bot       | B2 Top       | B2 Bot       | ВЗ Тор       | B3 Bot       | В4 Тор       | B4 Bot       | B5 Top       | B5 Bot       | В6 Тор       | B6 Bot       | C1 Top       | C1 Bot    | C2 Top       | C2 Bot           | C3 Top       | C3 Bot                  |
|------------------------------------------|----------------|----------------|---------------|--------------|------------------|---------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------|--------------|------------------|--------------|-------------------------|
| GRAIN SIZE (% dry)                       |                |                |               |              |                  |               |              |              |              |              |              |              |              |              |              | -            |              |              |              |              |              |              |              |              |           |              |                  |              |                         |
| Sand/Gravel (>0.063 mm)                  | 66.6           | 16.3           | 49.1          | 39.6         | 37.4             | 20.9          | 43.6         | 90.3         | 19.2         | 46.6         | 51.4         | 33.5         | 62.6         | 90.8         | 94.5         | 31.5         | 26.8         | 19.7         | 35.7         | 51.9         | 22.3         | 87.9         | 40.8         | 27.3         | 62.3      | 48.5         | 25.1             | 27.3         | 5.9                     |
| Silt (0.004 mm - 0.063 mm)               | 20.9           | 54.8           | 30.8          | 38.2         | 35.2             | 52.2          | 34.3         | 5.6          | 52.7         | 33.6         | 31.7         | 41.3         | 28.6         | 4.5          | 1.5          | 41.7         | 39.9         | 45.0         | 46.5         | 24.9         | 51.6         | 6.8          | 35.1         | 41.0         | 26.0      | 29.2         | 54.2             | 41.5         | 55.0                    |
| Clay (<0.004 mm)                         | 12.5           | 29.0           | 20.1          | 22.2         | 27.4             | 26.9          | 22.1         | 4.1          | 28.1         | 19.7         | 16.9         | 25.3         | 8.8          | 4.8          | 4.0          | 26.8         | 33.3         | 35.2         | 17.8         | 23.2         | 26.1         | 5.3          | 24.1         | 31.7         | 11.7      | 22.4         | 20.7             | 31.2         | 39.0                    |
| SEDIMENT CONVENTIONALS                   | -              |                |               |              |                  |               |              |              |              |              |              |              |              | -            |              |              |              |              | -            | -            | -            |              |              | -            |           |              | -                | -            |                         |
| Ammonia (mg/Kg)                          | 22             | 90             | 12            | 34           | 92               | 80            | 81           | 10U          | 86           | 33           | 87           | 17           | 10U          | 10U          | 10U          | 14           | 55           | 47           | 54           | 320          | 130          | 13           | 91           | 24           | 68        | 69           | 47               | 55           | 63                      |
| Total sulfides (mg/Kg, dry)              | 31             | 77             | 0.87          | 34           | 840              | 54            | 1100         | 3.6          | 0.87         | 73           | 0.33         | 80           | 0.12         | 0.18         | 0.1U         | 130          | 1.3          | 220          | 0.62         | 1100         | 180          | 260          | 71           | 210          | 4.1       | 1100         | 67.0             | 190          | 2.4                     |
| Total Volatile Solids (%)                | 1.5            | 2.1            | 2.3           | 2.1          | 4.2              | 2.7           | 4.1          | 1.7          | 2.2          | 2.0          | 1.6          | 2.9          | 1.1          | 0.55         | 0.43         | 3.2          | 2.6          | 3.1          | 1.7          | 5.2          | 3.60         | 1.30         | 2.90         | 4.10         | 2.70      | 3.20         | 2.2              | 4.50         | 2.70                    |
| Water soluble sulfides (mg/Kg, dry)      | 0.1U           | 0.1U           | 0.1U          | 0.1U         | 0.1U             | 0.1U          | 0.1U         | 0.12         | 0.29         | 0.1U         | 0.1U         | 0.18         | 0.13         | 0.11         | 0.11         | 0.16         | 0.1U         | 0.1U      | 0.12         | 0.11             | 0.1U         | 0.1U                    |
| Oil and Grease (mg/Kg, dry)              | 480            | 160            | 690           | 100U         | 6000             | 1000          | 2600         | 190          | 100U         | 700          | 100          | 590          | 100U         | 100U         | 100U         | 1200         | 100U         | 810          | 100U         | 14000        | 1800         | 650          | 2000         | 1700         | 470       | 1800         | 560              | 2100         | 200                     |
| TRPH (mg/Kg, dry)                        | 240            | 100U           | 280           | 100U         | 2100             | 440           | 970          | 160          | 100U         | 290          | 100U         | 270          | 100U         | 100U         | 100U         | 410          | 100U         | 400          | 100U         | 5500         | 670          | 300          | 980          | 810          | 220       | 820          | 190              | 720          | 150                     |
| % Solids (%)                             | 74             | 71             | 65            | 74           | 53               | 66            | 61           | 75           | 73           | 70           | 72           | 61           | 74           | 84           | 88           | 59           | 69           | 56           | 71           | 53           | 61           | 77           | 68           | 52           | 65        | 59           | 72               | 54           | 66                      |
| TOC (%)                                  | 0.57           | 0.75           | 0.34          | 1.53         | 0.78             | 1.54          | 0.50         | 0.35         | 0.45         | 0.9          | 0.5          | 0.77         | 0.1U         | 0.1U         | 0.1U         | 1.18         | 0.52         | 1.28         | 0.38         | 2.52         | 1.17         | 0.42         | 1.17         | 1.67         | 0.83      | 1.34         | 0.55             | 1.68         | 0.67                    |
| METALS (mg/Kg, dry wt)                   | 0.01           | 0.70           | 0.01          | 1.00         | 0.70             | 1.04          | 0.00         | 0.00         | 0.40         | 0.0          | 0.0          | 0.11         | 0.10         | 0.10         | 0.10         | 1.10         | 0.02         | 1.20         | 0.00         | 2.02         | 1.17         | 0.72         | 1.17         | 1.07         | 0.00      | 1.04         | 0.00             | 1.00         | 0.01                    |
| Arsenic                                  | 5.7            | 9.8            | 9.2           | 6.4          | 16               | 11            | 11           | 6.2          | 9.7          | 8.4J         | 11J          | 12           | 4.8          | 2.4          | 1.9          | 16           | 9.7          | 13           | 9.7          | 31J          | 17J          | 9.5J         | 16J          | 17J          | 10J       | 19           | 9.1              | 18J          | 10J                     |
| Cadmium                                  | 0.1U           | 0.1U           | 0.37          | 0.15         | 2.3              | 0.27          | 2.6          | 0.11         | 0.1U         | 0.24         | 0.15         | 0.44         | 0.1U         | 0.29         | 0.25         | 0.8          | 0.21         | 0.56         | 0.12         | 5.7          | 1            | 0.9          | 1.40         | 3.9          | 0.68      | 2.5          | 0.28             | 2.7          | 0.67                    |
| Chromium                                 | 12             | 19             | 31            | 19           | 180              | 28            | 85           | 26           | 30           | 53           | 52           | 48           | 25           | 15           | 18           | 66           | 42           | 66           | 34           | 250          | 78.0         | 190          | 93           | 130          | 71        | 160          | 37               | 150          | 57                      |
|                                          | 8.5            | 14             | 35            | 10           | 290              | <b>59</b>     | 87           | 16           | 18           | 28           | 22           | 46           | 16           | 5.3          | 6            | <b>73</b>    | 26           | <b>86</b>    | 23           |              | 160          | 140          | 180          | 160          | 39        |              | 39               | 310          | 35                      |
| Copper                                   |                |                |               |              | 180              |               |              |              | 13           |              | 17           | 72           | 13           | 16           | 2.2          | 140          | 18           | 83           | 13           | <u>570</u>   |              |              |              |              |           | <u>290</u>   |                  |              |                         |
| Lead                                     | 18             | 16             | 65<br>0.84    | 12           |                  | 150           | 500          | 18           |              | 47           | 0.1          |              |              |              |              |              |              |              |              | <u>570</u>   | 140          | 270          | 350          | <u>220</u>   | 34<br>4.2 | 420          | 90               | <u>220</u>   | 28                      |
| Mercury                                  | 0.13           | 0.11           | 0.81          | 0.2          | 3.3              | 6.5           | 0.47<br>30   | 0.18         | 0.073        | 0.34         | 0.1          | 0.81         | 0.13         | 0.023        | 0.02U<br>8.2 | <u>1.3</u>   | 0.36         | 0.6          | 0.061        | <u>12</u>    | <u>6.2</u>   | 0.69         | <u>7.2</u>   | <u>2.1</u>   | 1.2       | 2.3          | <u>1.2</u><br>11 | <u>5</u>     | <u><b>2.9</b></u><br>16 |
| Nickel                                   | 6.8            | 11             | 13            | 10           | <u>80</u>        | 13            |              | 12           | 14           | 11           | 15           | 15           | 11           | 5            |              | 20           | 25           | 23           | 16           | 0.411        | 25           | <u>53.0</u>  | <b>25</b>    | 32           | 21        | 43           |                  | 39           |                         |
| Selenium                                 | 0.13           | 0.22           | 0.26          | 0.17         | 0.42             | 0.23          | 0.42         | 0.16         | 0.19         | 0.16         | 0.16         | 0.32         | 0.1U         | 0.1U         | 0.1U         | 0.41         | 0.28         | 0.45         | 0.15         | 0.1U         | 0.14         | 0.1U         | 0.13         | 0.27         | 0.18      | 0.73         | 0.23             | 0.1          | 0.1U                    |
| Silver                                   | 0.1U           | 0.10           | 0.14          | 0.1U         | 0.29             | 0.1U          | 0.18         | 0.10         | 0.1U         | 0.10         | 0.10         | 0.13         | 0.10         | 0.1U         | 0.1U         | 0.19         | 0.1U         | 0.17         | 0.1U         | 0.50         | 0.23         | 0.1U         | 0.26         | 0.47         | 0.17      | 0.31         | 0.1U             | 0.24         | 0.15                    |
| Zinc                                     | 21             | 31             | 70            | 28           | 270              | 81            | 300          | 44           | 47           | 65           | 52           | 100          | 42           | 50           | 18           | 220          | 65           | 160          | 59           | <u>740</u>   | 190          | 270          | 330          | 280          | 87        | <u>1100</u>  | 76               | 300          | 76                      |
| ORGANOTINS (ppb, dry weight)             | 40             | 411            | 00            | 411          | 00               | 411           | 70           | 41.1         | 4.0          | 40           | 41.1         | 00           | 411          | 411          | 411          | 40           | 411          | 74           | 41.1         | 4.4          | 41.1         | 00           | 411          | 40           | 411       | 400          | 47               | 0.5          | 411                     |
| Dibutyltin                               | 16             | 10             | 32            | 10           | 93               | 1U            | 78           | 1U           | 1.8          | 19           | 10           | 38           | 10           | 10           | 1U           | 42           | 1U           | 71           | 1U           | 41           | 1U           | 29           | 1U           | 42           | 1U        | 130          | 17               | 35           | 1U                      |
| Monobutyltin                             | 1U             | 10             | 6.5           | 5.8          | 11               | 1U            | 11           | 1.7          | 10           | 1U           | 10           | 1.9          | 10           | 10           | 1U           | 3.7          | 1U           | 4.1          | 1U           | 3            | 1U           | 1U           | 10           | 1U           | 1U        | 5.4          | 2.4              | 10           | 1U                      |
| TetrabutyItin                            | 1U             | 1U             | 1U            | 10           | 1U               | 1U            | 1U           | 2.3          | 10           | 1U           | 10           | 10           | 1U           | 10           | 1U           | 2            | 1.9          | 1U           | 1U        | 1U           | 1U<br>           | 1U           | 1U                      |
| TributyItin                              | 13             | 1U             | 5.8           | 1U           | 68               | 1U            | 69           | 1U           | 3.6          | 7.4          | 10           | 23           | 1U           | 1.6          | 1U           | 13           | 2.1          | 55           | 1U           | 16           | 2.1          | 16           | 1U           | 13           | 1U        | 72           | 7.7              | 22           | 1U                      |
| CHLORINATED PESTICIDES (ppb, dry weight) | 4 21.1         | 4 411          | 4 511         | 4 411        | 4.011            | 4 511         | 4 (1)        | 4 211        | 4 411        | 4 411        | 4 411        | 4 (1)        | 4 411        | 4 01 1       | 4 411        | 4 711        | 4 411        | 4 011        | 4 411        | 4.011        | 4 (1)        | 4 011        | 4.511        | 4.011        | 4 511     | 4 711        | 4 411            | 4 01 1       | 4 511                   |
| Aldrin                                   | 1.3U           | 1.4U           | 1.5U          | 1.4U         | 1.9U             | 1.5U          | 1.6U         | 1.3U         | 1.4U         | 1.4U         | 1.4U         | 1.6U         | 1.4U         | 1.2U         | 1.1U         | 1.7U         | 1.4U         | 1.8U         | 1.4U         | 1.9U         | 1.6U         | 1.3U         | 1.5U         | 1.9U         | 1.5U      | 1.7U         | 1.4U             | 1.8U         | 1.5U                    |
| alpha-BHC                                | 1.3U           | 1.4U           | 1.5U          | 1.4U         | 1.9U             | 1.5U          | 1.6U         | 1.3U         | 1.4U         | 1.4U         | 1.4U         | 1.6U         | 1.4U         | 1.2U         | 1.1U         | 1.7U         | 1.4U         | 1.8U         | 1.4U         | 1.9U         | 1.6U         | 1.3U         | 1.5U         | 1.9U         | 1.5U      | 1.7U         | 1.40             | 1.8U         | 1.5U                    |
| beta-BHC                                 | 1.3U           | 1.4U           | 1.5U          | 1.4U         | 1.9U             | 1.5U          | 1.6U         | 1.3U         | 1.4U         | 1.4U         | 1.4U         | 1.6U         | 1.4U         | 1.2U         | 1.1U         | 1.7U         | 1.4U         | 5.7          | 1.4U         | 1.9U         | 1.6U         | 8.1          | 1.5U         | 1.9U         | 1.5U      | 1.7U         | 4                | 1.8U         | 1.5U                    |
| delta-BHC                                | 1.3U<br>1.3U   | 1.4U           |               | 1.4U<br>1.4U | 1.9U             | 1.5U<br>1.5U  | 1.6U<br>1.6U | 1.3U<br>1.3U | 1.4U         |              |              |              | 1.4U         | 1.2U         | 1.1U         | 1.7U         | 1.4U         | 1.8U<br>1.8U | 1.4U         | 1.9U<br>1.9U | 1.6U<br>1.6U | 1.3U<br>1.3U | 1.5U         | 1.9U<br>1.9U |           |              | 1.4U             | 1.8U<br>1.8U | 1.5U                    |
| gamma-BHC (lindane) alpha-Chlordane      | 1.3U           |                |               |              | 1.9U<br>1.9U     | 1.5U          | 1.6U         |              | 1.4U<br>1.4U | 1.4U<br>1.4U | 1.4U<br>1.4U | 1.6U<br>1.6U | 1.4U<br>1.4U | 1.2U<br>1.2U | 1.1U<br>1.1U | 1.7U<br>1.7U | 1.4U<br>1.4U | 1.8U         | 1.4U<br>1.4U | 1.9U         | 1.6U         | 1.30         | 1.5U<br>1.5U |              | 1.5U      | 1.7U<br>1.7U | 1.4U<br>1.4U     | 1.8U         | 1.5U<br>1.5U            |
| gamma-Chlordane                          | 1.3U           | 1.4U           |               | 1.4U         | 7.6              | 1.5U          | 1.00         | 1.3U         | 1.4U         | 1.4U         |              |              | 1.4U         | 1.2U         | 1.1U         | 2.5          | 1.4U         | 1.8U         | 1.4U         | 6.4          | 1.6U         | 1.3U         | 1.5U         | 9.2          | 1.5U      | 9.6          | 1.4U             | 1.80         | 1.5U                    |
| 4,4'-DDD                                 | 2.6            | 1.4U           | 4.3           | 1.4U         | 53               | 1.5U          | 2300         | 1.3U         | 1.4U         | 5.8          | 1.4U         |              | 2.3          | 1.2U         | 1.1U         | 11           | 1.4U         | 3.6          | 1.4U         | 41           | 5.4          | 1.50         | 6.8          | 27           | 7.7       | 25           | 1.4U             | 31           | 1.5U                    |
| 4,4'-DDE                                 | 16             | 1.4U           | 32            | 1.4U         | <u>250</u>       | 6.5           | 2100         | 2.3          | 1.4U         | 3.6<br>38    | 1.4U         | 47           | 20           | 1.2U         | 1.1U         | <u>73</u>    | 1.4U         | 1 <b>5</b>   | 1.4U         | 410          | 25           | 33           | <u>53</u>    | 110          | 130       | 110          | 9.3              | 110          | 1.5U                    |
| 4,4'-DDT                                 | 1.3U           |                | 1.5U          |              | <u>250</u><br>25 | 1.5U          | 110          | 1.3U         | 1.4U         |              |              | 1.6U         |              | 1.2U         | 1.1U         | 1.7U         | 1.4U         | 1.8U         | 1.4U         | 23           | 1.6U         | 1.3U         | 1.5U         |              |           | 1.7U         | 1.4U             | 1.8U         | 1.5U                    |
| Total DDTs                               | 18.6           | 1.4U           |               | 1.4U         | 328              | 6.5           | <u>4510</u>  | 2.3          | 1.4U         |              |              | <u>53.9</u>  | 22.3         | 1.2U         | 1.1U         | <u>84</u>    | 1.4U         | 18.6         | 1.4U         | <u>474</u>   | 30.4         | 47           | <u>59.8</u>  |              | 137.7     |              | 9.3              |              | 1.5U                    |
| Bold values equal or exceed the ERL.     |                |                |               |              |                  |               |              |              |              |              |              |              | detection I  |              |              |              |              |              |              |              |              |              |              |              |           |              |                  |              |                         |

Bold and underlined values equal or exceed the ERM.

Boxed values equal or exceed the San Francisco Bay Threshold.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

<sup>&</sup>quot; J " Qualifier denotes analyte concentration reported as an estimate.

Table 2. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Program - Southwest Slip Project. Vibracore Samples. (Page 2 of 4)

| Analytical Parameter               | Comp<br>A1 Top | Comp<br>A1 Bot |              | Comp B<br>Bot | Comp C<br>Top | Comp C<br>Bot | Comp D      | A1-1<br>Top | A1-1<br>Bot | A1-2<br>Top | A1-2<br>Bot | В1 Тор | B1 Bot | В2 Тор | B2 Bot | ВЗ Тор      | B3 Bot | В4 Тор      | B4 Bot | В5 Тор       | B5 Bot | В6 Тор      | B6 Bot | C1 Top     | C1 Bot | C2 Top      | C2 Bot | С3 Тор      | C3 Bot |
|------------------------------------|----------------|----------------|--------------|---------------|---------------|---------------|-------------|-------------|-------------|-------------|-------------|--------|--------|--------|--------|-------------|--------|-------------|--------|--------------|--------|-------------|--------|------------|--------|-------------|--------|-------------|--------|
| CHLORINATED PESTICIDES (Continued) |                |                |              |               |               |               |             |             |             |             |             |        |        |        |        |             |        |             |        |              |        |             |        |            |        |             |        |             |        |
| Dieldrin                           | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 10          | 1.4U   | 1.8U        | 1.4U   | 64           | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 20          | 1.4U   | 14          | 1.5U   |
| Endosulfan I                       | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 1.8U        | 1.5U   |
| Endosulfan II                      | 1.3U           | 1.4U           | 3.5          | 1.4U          | 27            | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 48          | 1.4U   | 1.8U        | 1.4U   | 89           | 1.6U   | 7.3         | 1.5    | 18         | 1.7    | 66          | 1.4U   | 31          | 1.5U   |
| Endosulfan sulfate                 | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 1.8U        | 1.5U   |
| Endrin                             | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 1.8U        | 1.5U   |
| Endrin Aldehyde                    | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 61          | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 1.8U        | 1.5U   |
| Endrin Ketone                      | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 2.3           | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 8.1    | 2           | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 9.4         | 1.5U   |
| Heptachlor                         | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 1.6U        | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 3            | 1.6U   | 2           | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 3.1         | 1.5U   |
| Heptachlor epoxide                 | 1.3U           | 1.4U           | 1.5U         | 1.4U          | 1.9U          | 1.5U          | 4.1         | 1.3U        | 1.4U        | 1.4U        | 1.4U        | 1.6U   | 1.4U   | 1.2U   | 1.1U   | 1.7U        | 1.4U   | 1.8U        | 1.4U   | 1.9U         | 1.6U   | 1.3U        | 1.5U   | 1.9U       | 1.5U   | 1.7U        | 1.4U   | 1.8U        | 1.5U   |
| Toxaphene                          | 13U            | 14U            | 15U          | 14U           | 19U           | 15U           | 16U         | 13U         | 14U         | 14U         | 14U         | 16U    | 14U    | 12U    | 11U    | 17U         | 14U    | 18U         | 14U    | 19U          | 16U    | 13U         | 15U    | 19U        | 15U    | 17U         | 14U    | 18U         | 15U    |
| Methoxychor                        | 2.7U           | 2.8U           | 3.1U         | 2.7U          | 3.8U          | 3.0U          | 3.3U        | 2.7U        | 2.8U        | 2.8U        | 2.8U        | 3.3U   | 2.7U   | 2.4U   | 2.3U   | 3.4U        | 2.9U   | 3.6U        | 2.8U   | 3.8U         | 3.3U   | 2.6U        | 2.9U   | 3.9U       | 3.1U   | 3.4U        | 2.8U   | 3.7U        | 3.0U   |
| PCBs (ppb, dry weight)             |                |                |              |               |               |               |             |             |             |             |             |        |        |        |        |             |        |             |        |              |        |             |        |            |        |             |        |             |        |
| PCB 1242                           | 6.7U           | 7U             | 7.7U         | 6.8U          | 9.5U          | 7.5U          | 8.2U        | 6.7U        | 6.9U        | 7.1U        | 6.9U        | 8.2U   | 6.8U   | 5.9U   | 5.7U   | 8.5U        | 7.2U   | 9.0U        | 7.1U   | 9.4U         | 8.2U   | 6.5U        | 7.4U   | 9.6U       | 7.7U   | 8.4U        | 7.0U   | 9.2U        | 7.6U   |
| PCB 1248                           | 6.7U           | 7U             | 7.7U         | 6.8U          | 9.5U          | 7.5U          | 8.2U        | 6.7U        | 6.9U        | 7.1U        | 6.9U        | 8.2U   | 6.8U   | 5.9U   | 5.7U   | 8.5U        | 7.2U   | 9.0U        | 7.1U   | 9.4U         | 8.2U   | 6.5U        | 7.4U   | 9.6U       | 7.7U   | 8.4U        | 7.0U   | 9.2U        | 7.6U   |
| PCB 1254                           | 34             | 7U             | 180          | 13            | 1100          | 44            | 310         | 6.7U        | 6.9U        | 68          | 6.9U        | 210    | 300    | 5.9U   | 5.7U   | 8.5U        | 7.2U   | 95          | 7.1U   | 5100         | 140    | 630         | 110    | 520        | 130    | 1300        | 18     | 1500        | 7.6U   |
| PCB 1260                           | 6.7U           | 7U             | 7.7U         | 6.8U          | 9.5U          | 7.5U          | 8.2U        | 6.7U        | 6.9U        | 7.1U        | 6.9U        | 8.2U   | 6.8U   | 5.9U   | 5.7U   | 1900        | 7.2U   | 9.0U        | 7.1U   | 9.4U         | 8.2U   | 6.5U        | 7.4U   | 9.6U       | 7.7U   | 8.4U        | 7.0U   | 9.2U        | 7.6U   |
| Total PCBs                         | 34             | 7U             | <u>180</u>   | 13            | <u>1100</u>   | 44            | 310         | 6.7U        | 6.9U        | 68          | 6.9U        | 210    | 300    | 5.9U   | 5.7U   | <u>1900</u> | 7.2U   | 95          | 7.1U   | <u>5100</u>  | 140    | 630         | 110    | <u>520</u> | 130    | 1300        | 18     | <u>1500</u> | 7.6U   |
| SEMI-VOLATILES (ppb, dry wt)       |                |                |              |               |               |               |             |             |             |             |             |        |        |        |        |             |        |             |        |              |        |             |        |            |        |             |        |             |        |
| Naphthalene                        | 6.7U           | 7U             | 7.7U         | 6.8U          | 80            | 1100          | <u>3600</u> | 6.7U        | 6.9U        | 7.7         | 6.9U        | 8.2U   | 6.8U   | 5.9U   | 5.7U   | 8.8         | 7.2U   | 9U          | 7.1U   | 180          | 660    | 10          | 280    | 19U*       | 7.7U   | 44          | 7U     | 160         | 7.6U   |
| Acenaphthylene                     | 13             | 7U             | 37           | 6.8U          | 120           | 20            | 41U         | 6.7U        | 6.9U        | 17          | 6.9U        | 28     | 6.8U   | 5.9U   | 5.7U   | 65          | 7.2U   | 100         | 7.1U   | 19U*         | 41U*   | 34          | 22U*   | 56         | 7.7U   | 37          | 7U     | 43          | 7.6U   |
| Acenaphthene                       | 6.7U           | 7U             | 8.4          | 6.8U          | 510           | 240           | 960         | 6.7U        | 6.9U        | 7.1U        | 6.9U        | 8.2U   | 6.8U   | 5.9U   | 5.7U   | 9.9         | 7.2U   | 12          | 7.1U   | 470          | 150    | 11          | 91     | 21         | 7.7U   | 49          | 7U     | 96          | 7.6U   |
| Fluorene                           | 6.7U           | 7U             | 21           | 6.8U          | 440           | 230           | <u>960</u>  | 7.2         | 6.9U        | 12          | 6.9U        | 18     | 6.8U   | 5.9U   | 5.7U   | 31          | 7.2U   | 52          | 7.1U   | <u>550</u>   | 210    | 23          | 37U*   | 44         | 7.7U   | 89          | 7U     | 180         | 7.6U   |
| Phenanthrene                       | 27             | 7U             | 120          | 6.8U          | 1900          | 860           | 2300        | 23          | 6.9U        | 48          | 6.9U        | 82     | 14U*   | 5.9U   | 5.7U   | 190         | 7.2U   | 220         | 7.1U   | 3200         | 630    | 140         | 540    | 270        | 17     | 660         | 26     | 1000        | 7.6U   |
| Anthracene                         | 24             | 7U             | 87           | 6.8U          | 1600          | 330           | 590         | 24          | 6.9U        | 48          | 6.9U        | 55     | 6.8U   | 5.9U   | 5.7U   | 150         | 7.2U   | 270         | 7.1U   | 2300         | 460    | 120         | 320    | 170        | 13     | 290         | 19     | 240         | 7.6U   |
| Fluoranthene                       | 59             | 7U             | 230          | 6.8U          | 9700          | 1500          | 1600        | 52          | 6.9U        | 120         | 6.9U        | 160    | 8.2    | 5.9U   | 5.7U   | 340         | 7.2U   | 290         | 7.1U   | 9800         | 2000   | 290         | 1300   | 710        | 36     | 1400        | 79     | 1300        | 7.6U   |
| Pyrene                             | 110            | 11             | 370          | 6.8U          | 8500          | 1300          | 2000        | 120         | 6.9U        | 260         | 12          | 160    | 14U*   | 5.9U   | 5.7U   | 390         | 7.2U   | 1400        | 7.1U   | 13000        | 2100   | 2500        | 1100   | 1000       | 150    | 1900        | 260    | 1800        | 38     |
| Benzo(a)anthracene                 | 59             | 7U             | 230          | 6.8U          | 4700          | 500           | 540         | 48          | 6.9U        | 120         | 6.9U        | 140    | 14U*   | 5.9U   | 5.7U   | 410         | 7.2U   | 660         | 7.1U   | 4900         | 990    | 360         | 680    | 540        | 31U*   | 780         | 21U*   | 780         | 7.6U   |
| Chrysene                           | 100            | 14U*           | 400          | 6.8U          | 6100          | 600           | 710         | 89          | 6.9U        | 210         | 14U*        | 240    | 20U*   | 5.9U   | 5.7U   | 710         | 7.2U   | 2000        | 7.1U   | 6000         | 1500   | 890         | 870    | 850        | 34     | 1200        | 74     | 1100        | 15U*   |
| Benzo(b)fluoranthene               | 230            | 14U*           | 1400         | 14U*          | 11000         | 450           | 730         | 120         | 6.9U        | 440         | 15          | 1000   | 50     | 6.1    | 5.7U   | 2000        | 9.7    | 4100        | 7.1U   | 4300         | 970    | 1800        | 520    | 2300       | 54     | 2700        | 120    | 2000        | 15U*   |
| Benzo(k)fluoranthene               | 200            | 14U*           | 800          | 14U*          | 12000         | 350           | 610         | 80          | 6.9U        | 270         | 15          | 590    | 28     | 5.9U   | 5.7U   | 1700        | 7.9    | 2900        | 7.1U   | 6800         | 710    | 2100        | 770    | 2500       | 40     | 2000        | 96     | 2000        | 15U*   |
| Benzo(a)pyrene                     | 180            | 14U*           | 1 <b>200</b> | 14U*          | 5300          | <b>450</b>    | <b>590</b>  | 98          | 6.9U        | 330         | 21U*        | 800    | 31     | 5.9U   | 5.7U   | 2000        | 7.2U   | <b>2900</b> | 17     | <b>5700</b>  | 840    | 1300        | 290    | 2100       | 48     | <b>2400</b> | 130    | 1800        | 43     |
| Indeno[1,2,3-CD]pyrene             | 27U*           | 14U*           | 520          | 14U*          | 2100          | 200           | 330         | 43          | 6.9U        | 160         | 28U*        | 340    | 27U*   | 12U    | 11U    | 950         | 14U    | 1300        | 14U    | 38U*         | 82U*   | 680         | 44U*   | 960        | 31     | 1000        | 58     | 850         | 23U*   |
| Dibenzo(a,h)anthracene             | 27U*           | 14U*           | 280          | 14U*          | <u>610</u>    | 60U           | 49U*        | 40U*        | 6.9U        | 57U*        | 28U*        | 110    | 27U*   | 12U    | 11U    | <u>420</u>  | 14U    | <u>560</u>  | 14U    | <u>1200</u>  | 100    | <u> 290</u> | 78     | <u>420</u> | 15U    | 67U*        | 28U*   | <u>390</u>  | 23U*   |
| Benzo[ghi]perylene                 | 27U*           | 14U*           | 240          | 14U*          | 340           | 93            | 99U*        | 50          | 6.9U        | 57U*        | 28U*        | 290    | 20U*   | 12U*   | 5.7U   | 410         | 23     | 270         | 14U*   | 19U*         | 99U*   | 39U*        | 44U*   | 67U*       | 15U*   | 220         | 70     | 130         | 23U*   |
| Benzo(e)pyrene                     | 150U*          | 14U*           | 780          | 14U*          | 2700          | 350           | 450         | 87          | 6.9U        | 260         | 21U*        | 510    | 20U*   | 5.9U   | 5.7U   | 1300        | 13     | 2000        | 27     | 4300         | 630    | 770         | 240    | 1100       | 42     | 1500        | 130    | 1100        | 64     |
| Total detectable PAHs              | 1200           | 11             | 6700         | 14U*          | <u>68000</u>  | 8600          | 16000       | 840         | 6.9U        | 2300        | 42          | 4500   | 120    | 6.1    | 5.7U   | 11000       | 54     | 19000       | 44     | <u>63000</u> | 12000  | 12000       | 7100   | 13000      | 470    | 16000       | 1100   | 15000       | 150    |
| Total Phanala                      | 280            | 160            | 510          | 220           | 770           | 350           | 630         | 190         | 21          | 630         | 210         | 180    | 88     | 120    | 29     | 400         | 160    | 160         | 98     | 1200         | 100    | 190         | 210    | 1000       | 190    | 130         | 40     | 500         | 130    |
| Total Phenols                      | 100            | 14             | 300          | 23            | 130           | 38            | 810         | 42          | 18          | 180         | 14U         | 31     | 14U    | 12     | 11U    | 44          | 29     | 68          | 18     | 120          | 680    | 23          | 220    | 170        | 62     | 17U         | 24     | 22          | 26     |

Bold values equal or exceed the ERL. Bold and underlined values equal or exceed the ERM.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

Boxed values equal or exceed the San Francisco Bay Threshold.

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

Table 2. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Program - Southwest Slip Project. Vibracore Samples. (Page 3 of 4)

| Analytical Parameter                     | C4 Top     | C4 Bot | C5 Top     | C5 Bot | C6 Top    | C6 Bot | C7 Top     | C7 Bot     | C8 Top        | C8 Bot     | C9 Top     | C9 Bot | D1         | D2         | D3        | D4   | D5        | D6   | D7                   | D8         | D9              | ER-L 1995<br>(dry wt) | ER-M 1995<br>(dry wt) | Title 22<br>(wet wt) |
|------------------------------------------|------------|--------|------------|--------|-----------|--------|------------|------------|---------------|------------|------------|--------|------------|------------|-----------|------|-----------|------|----------------------|------------|-----------------|-----------------------|-----------------------|----------------------|
| GRAIN SIZE (% dry)                       | О+ 10р     | 04 000 | 00 100     | 00 001 | оо тор    | 00 001 | От тор     | O7 Bot     | оо гор        | OO BOI     | 00 100     | 00 Bot | ы          | <i>D</i> 2 |           | D4   | D3        |      |                      |            | D0              | (dry wt)              | (dry wt)              | (WCt Wt)             |
| Sand/Gravel (>0.063 mm)                  | 21.0       | 18.8   | 25.8       | 51.6   | 17.3      | 8.3    | 20.8       | 13.3       | 79.0          | 12.6       | 13.9       | 42.4   | 19.6       | 4.7        | 28.8      | 70.0 | 89.5      | 66.6 | 24.5                 | 54.3       | 32.9            |                       |                       |                      |
| Silt (0.004 mm - 0.063 mm)               | 43.2       | 49.8   | 44.1       | 37.7   | 50.8      | 56.3   | 48.3       | 64.1       | 13.4          | 53.3       | 48.4       | 42.6   | 42.3       | 58.5       | 40.0      | 19.0 | 6.6       | 22.2 | 38.5                 | 25.3       | 30.9            |                       |                       |                      |
| Clay (<0.004 mm)                         | 35.7       | 31.3   | 30.1       | 10.7   | 31.9      | 35.4   | 30.8       | 22.6       | 7.6           | 34.0       | 37.7       | 15.0   | 38.1       | 36.8       | 31.2      | 10.9 | 3.9       | 11.2 | 36.9                 | 20.4       | 36.2            |                       |                       |                      |
| SEDIMENT CONVENTIONALS                   |            | 00     |            |        | 00        |        |            |            |               | 0          | <u> </u>   |        |            |            |           |      | 0.0       |      |                      |            |                 |                       |                       |                      |
| Ammonia (mg/Kg)                          | 79         | 78     | 94         | 34     | 22        | 68     | 70         | 68         | 58            | 86         | 220        | 57     | 77         | 160        | 70        | 58   | 92        | 10U  | 110                  | 57         | 250             |                       |                       |                      |
| Total sulfides (mg/Kg, dry)              | 500        | 1.6    | 930        | 10.0   | 110       | 5.6    | 660        | 79         | 1100          | 20         | 1000       | 1.5    | 200        | 570        | 260       | 460  | 290.0     | 81   | 1200                 | 690        | 2900            |                       |                       |                      |
| Total Volatile Solids (%)                | 5.0        | 1.8    | 3.8        | 0.97   | 4.6       | 3.0    | 4.5        | 2.6        | 3.0           | 2.5        | 4.4        | 1.6    | 2.9        | 4.5        | 3.8       | 3.3  | 4.1       | 1.5  | 4.2                  | 2.3        | 12              |                       |                       |                      |
| Water soluble sulfides (mg/Kg, dry)      | 0.17       | 0.11   | 0.18       | 0.1U   | 0.1U      | 0.1U   | 0.1U       | 0.1U       | 0.1U          | 0.1U       | 0.1U       | 0.1U   | 0.49       | 0.1U       | 0.1U      | 0.13 | 0.1U      | 0.1U | 0.1U                 | 0.1U       | 0.13            |                       |                       |                      |
| Oil and Grease (mg/Kg, dry)              | 1900       | 170    | 3600       | 310    | 1000      | 170    | 2000       | 770        | 2000          | 960        | 3800       | 760    | 1700       | 1900       | 1900      | 1200 | 2000      | 1200 | 1500                 | 1700       | 20000           |                       |                       |                      |
| TRPH (mg/Kg, dry)                        | 480        | 100U   | 810        | 100U   | 430       | 100U   | 720        | 330        | 640           | 380        | 1200       | 560    | 1100       | 1300       | 540       | 710  | 540       | 430  | 790                  | 880        | 4600            |                       |                       |                      |
| % Solids (%)                             | 48         | 69     | 49         | 73     | 56        | 66     | 53         | 68         | 66            | 66         | 46         | 68     | 58         | 49         | 57        | 63   | 60        | 79   | 48                   | 63         | 40              |                       |                       |                      |
| TOC (%)                                  | 1.89       | 0.58   | 0.51       | 1.27   | 1.42      | 0.6    | 1.53       | 0.48       | 1.03          | 0.85       | 1.79       | 0.51   | 1.05       | 1.53       | 1.55      | 2.34 | 2.00      | 0.41 | 1.9                  | 1.09       | 8.75            |                       |                       |                      |
| METALS (mg/Kg, dry wt)                   |            |        |            |        |           |        |            |            |               |            |            |        |            |            |           |      |           |      |                      |            | <del>-</del>    |                       |                       |                      |
| Arsenic                                  | 19         | 8.7    | 20         | 5.8    | 9.8J      | 8.2J   | 15J        | 19J        | 12J           | 14J        | 19J        | 6.3J   | 13J        | 21J        | 14        | 4.8J | 7         | 4.7  | 22J                  | 16J        | 14J             | 8.2                   | 70.00                 | 500                  |
| Cadmium                                  | 2.3        | 0.19   | 2.2        | 0.25   | 2.4       | 0.53   | 3.7        | 1.1        | 1.3           | 0.87       | 8.4        | 0.69   | 1.1        | <u>39</u>  | 4.2       | 4.1  | 2.5       | 1.1  | <u>22</u>            | <u>10</u>  | <u>23</u>       | 1.2                   | 9.60                  | 100                  |
| Chromium                                 | 80         | 39     | 100        | 18     | 88        | 58     | 200        | 55         | 800           | 72         | 140        | 39     | 74         | 190        | 83        | 48   | 49        | 25   | <del>==</del><br>210 | <u>420</u> | <u>=</u><br>110 | 81                    | 370.0                 | 2500                 |
| Copper                                   | 100        | 21     | 160        | 12     | 110       | 37     | <u>280</u> | 240        | <u>750</u>    | 130        | <u>270</u> | 71     | 130        | 240        | 70        | 32   | 35        | 11   | 1300                 | <u>560</u> | 1100            | 34.0                  | 270.00                | 2500                 |
| Lead                                     | 190        | 22     | <u>270</u> | 52     | 96        | 17     | <u>210</u> | <u>260</u> | 2200          | 140        | 280        | 56     | 160        | <u>250</u> | 140       | 54   | 97        | 190  | 77                   | 330        | 1100            | 47                    | 218.00                | 1000                 |
| Mercury                                  | <u>1.9</u> | 0.19   | 6.5        | 0.25   | 2.0       | 0.43   | 3.5        | <u>16</u>  | 1.9           | <u>3.7</u> | 4.8        | 0.99   | 2.9        | 1.5        | 0.81      | 0.56 | 0.2       | 0.1  | <u>1.6</u>           | 3          | <u>5.7</u>      | 0.15                  | 0.71                  | 20                   |
| Nickel                                   | 23         | 14     | 25         | 7      | 30        | 19     | <u>67</u>  | 21         | 370           | 20         | 43         | 15     | 20         | 50         | 25        | 23   | 26        | 14   | 3200                 | <u>130</u> | <u>62</u>       | 20.9                  | 51.60                 | 2000                 |
| Selenium                                 | 0.59       | 0.25   | 0.64       | 0.12   | 0.1U      | 0.1U   | 0.16       | 0.1U       | 0.1U          | 0.1U       | 0.17       | 0.12   | 0.21       | 0.31       | 0.55      | 0.29 | 0.74      | 0.32 | 0.25                 | 0.1U       | 0.15            |                       |                       | 100                  |
| Silver                                   | 0.22       | 0.1U   | 0.21       | 0.1U   | 0.27      | 0.11   | 0.41       | 0.17       | 0.22          | 0.15       | 0.58       | 0.10   | 0.1U       | 0.58       | 0.19      | 0.15 | 0.1U      | 0.1U | <u>41</u>            | 0.36       | 0.46            | 1.00                  | 3.70                  | 500                  |
| Zinc                                     | 230        | 58     | 270        | 41     | 160       | 70     | 340        | 240        | 1500          | 150        | 310        | 100    | 140        | 270        | 160       | 97   | 120       | 45   | 490                  | 570        | 4600            | 150.0                 | 410.0                 | 5000                 |
| ORGANOTINS (ppb, dry weight)             |            |        | -          |        |           |        |            |            |               |            |            |        | -          |            |           | -    | -         |      |                      |            |                 |                       |                       |                      |
| Dibutyltin                               | 170        | 1U     | 130        | 1U     | 19        | 1U     | 62         | 1U         | 140           | 4.7        | 10         | 1U     | 1U         | 7.8        | 41        | 17   | 1U        | 2    | 70                   | 150        | 5.8             |                       |                       |                      |
| Monobutyltin                             | 7.5        | 1U     | 7.2        | 1U     | 1U        | 1U     | 2.5        | 1U         | 1U            | 1U         | 1U         | 1U     | 1U         | 1U         | 3.4       | 1U   | 1U        | 1.9  | 1U                   | 10.0       | 1U              |                       |                       |                      |
| Tetrabutyltin                            | 2.2        | 1.5    | 1U         | 1U     | 1U        | 1U     | 1U         | 1U         | 1U            | 1U         | 1U         | 1U     | 1U         | 1U         | 1U        | 1U   | 1U        | 1U   | 1U                   | 1U         | 1U              |                       |                       |                      |
| Tributyltin                              | 88         | 1U     | 57         | 2.2    | 5.8       | 1U     | 26         | 1U         | 110           | 1U         | 1U         | 1U     | 1U         | 1U         | 12        | 3    | 1U        | 1.3  | 77                   | 92         | 1U              |                       |                       |                      |
| CHLORINATED PESTICIDES (ppb, dry weight) |            |        |            |        |           |        |            |            |               |            |            |        |            |            |           |      |           |      |                      |            |                 |                       |                       |                      |
| Aldrin                                   | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U      | 1.5U   | 1.9U       | 1.5U       | 7.6U          | 1.5U       | 2.2U       | 1.5U   | 1.7U       | 2.0U       | 1.8U      | 1.6U | 1.7U      | 1.3U | 2.1U                 | 1.6U       | 25U             |                       |                       |                      |
| alpha-BHC                                | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U      | 1.5U   | 1.9U       | 1.5U       | 7.6U          | 1.5U       | 2.2U       | 1.5U   | 1.7U       | 2.0U       | 1.8U      | 1.6U | 1.7U      | 1.3U | 2.1U                 | 1.6U       | 33              |                       |                       |                      |
| beta-BHC                                 | 13         | 1.5U   | 20         | 1.4U   | 8.2       | 1.5U   | 1.9U       | 2.4        | 7.6U          | 2.3        | 12         | 2.2    | 2.4        | 9.5        | 11        | 6.8  | 10        | 1.3U | 2.1U                 | 1.6U       | 25U             |                       |                       |                      |
| delta-BHC                                | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U      | 1.5U   | 1.9U       | 1.5U       | 7.6U          | 1.5U       | 2.2U       | 1.5U   | 1.7U       | 2.0U       | 1.8U      | 1.6U | 1.7U      | 1.3U | 2.1U                 | 4.5        | 25U             |                       |                       |                      |
| gamma-BHC (lindane)                      | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U      | 1.5U   | 1.9U       | 1.5U       | 7.6U          | 1.5U       | 2.2U       | 1.5U   | 1.7U       | 2.0U       | 1.8U      | 1.6U | 1.7U      | 1.3U | 2.1U                 | 1.6U       | 25U             |                       |                       |                      |
| alpha-Chlordane                          | 2.1U       | 1.5U   | 9          | 1.4U   | 13        | 1.5U   | 29         | 1.5U       | 7.6U          | 1.5U       | 12         | 1.5U   | 3.3        | 2.0U       | 9.9       | 14   | 28        | 11   | 2.1U                 | 1.6U       | 25U             |                       |                       |                      |
| gamma-Chlordane                          | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 6.6       | 1.5U   | 9.3        | 1.5U       | 7.6U          | 1.5U       | 2.2U       | 1.5U   | 1.7U       | 61         | 7.9       | 16   | 1.7U      | 6.5  | 54                   | 9.4        | 25U             |                       |                       |                      |
| 4,4'-DDD                                 | 98         | 1.5U   | 150        | 1.4U   | 14        | 1.5U   | 30         | 4          | 36            | 1.5U       | 150        | 2.2    | 140        | 190        | 18        | 7.1  | 32        | 16   | 13                   | 46         | 13000           |                       |                       |                      |
| 4,4'-DDE                                 | <u>86</u>  | 1.5U   | <u>620</u> | 1.4U   | <u>43</u> | 1.5U   | <u>130</u> | <u>66</u>  | <u>61</u>     | 4.3        | 330        | 5.4    | <u>470</u> | <u>400</u> | <u>37</u> | 17   | <u>35</u> | 7.6  | <u>69</u>            | 99         | 33000           | 2.2                   | 27                    |                      |
| 4,4'-DDT                                 | 2.1U       | 1.5U   | 53         | 1.4U   | 3.5       | 1.5U   | <u>17</u>  | 1.5U       | <u></u><br>17 | 1.8        | 81         | 1.5U   | 380        | 160        | 3.9       | 2.4  | 10        | 1.3U | 2.1U                 | <u>24</u>  | 2400            |                       |                       |                      |
| Total DDTs                               | 184        | 1.5U   | <u>823</u> | 1.4U   | 60.5      | 1.5U   | 177        | 70         | 114           | 6.1        | 561        | 7.6    | 990        | <u>750</u> | 58.9      | 26.5 | 77        | 23.6 | 82                   | 169        | 48400           | 1.58                  | 46.1                  | 1000                 |
| Bold values equal or exceed the ERL.     |            |        |            | -      |           |        | es analyte |            |               |            |            | -      |            |            |           |      |           |      | _                    |            |                 |                       | -                     |                      |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

Boxed values equal or exceed the San Francisco Bay Threshold.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

<sup>&</sup>quot; J " Qualifier denotes analyte concentration reported as an estimate

Table 2. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Program - Southwest Slip Project. Vibracore Samples. (Page 4 of 4)

| Analytical Parameter               | C4 Top     | C4 Bot | C5 Top     | C5 Bot | C6 Top | C6 Bot | C7 Top      | C7 Bot | С8 Тор        | C8 Bot | С9 Тор      | C9 Bot | D1         | D2          | D3   | D4   | D5         | D6   | D7         | D8          | D9            | ER-L 19<br>(dry wt | 95 ER-M 1995<br>(dry wt) | 5 Title 22 (wet<br>wt) |
|------------------------------------|------------|--------|------------|--------|--------|--------|-------------|--------|---------------|--------|-------------|--------|------------|-------------|------|------|------------|------|------------|-------------|---------------|--------------------|--------------------------|------------------------|
| CHLORINATED PESTICIDES (Continued) |            |        |            |        |        |        |             |        |               |        |             |        |            |             |      |      |            |      |            |             |               |                    |                          |                        |
| Dieldrin                           | 3.1        | 1.5U   | 5.8        | 1.4U   | 1.8U   | 1.5U   | 2.7         | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 1.5D   | 6.6        | 10          | 1.8U | 6.2  | 1.7U       | 2    | 8.6        | 16          | 25U           |                    |                          |                        |
| Endosulfan I                       | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 1.5D   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.6U        | 25U           |                    |                          |                        |
| Endosulfan II                      | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 42          | 1.5U   | 24            | 1.5U   | 2.2U        | 1.5D   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 43          | 25U           |                    |                          |                        |
| Endosulfan sulfate                 | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 2.2U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.6U        | 25U           |                    |                          |                        |
| Endrin                             | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 1.5U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.6U        | 25U           |                    |                          |                        |
| Endrin Aldehyde                    | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 12     | 7.6U          | 1.5U   | 2.2U        | 1.5U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.6U        | 25U           |                    |                          |                        |
| Endrin Ketone                      | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 1.5U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 6.2         | 25U           |                    |                          |                        |
| Heptachlor                         | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9         | 1.9    | 7.6U          | 1.5U   | 2.2U        | 1.5U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.7         | 25U           |                    |                          |                        |
| Heptachlor epoxide                 | 2.1U       | 1.5U   | 2.1U       | 1.4U   | 1.8U   | 1.5U   | 1.9U        | 1.5U   | 7.6U          | 1.5U   | 2.2U        | 1.5U   | 1.7U       | 2.0U        | 1.8U | 1.6U | 1.7U       | 1.3U | 2.1U       | 1.6U        | 25U           |                    |                          |                        |
| Toxaphene                          | 21U        | 15U    | 21U        | 14U    | 18U    | 15U    | 19U         | 15U    | 76U           | 15U    | 22U         | 15U    | 17U        | 20U         | 18U  | 16U  | 17U        | 13U  | 21U        | 16U         | 250U          |                    |                          |                        |
| Methoxychor                        | 4.2U       | 2.9U   | 4.1U       | 2.7U   | 3.5U   | 3.0U   | 3.8U        | 3.0U   | 15U           | 3.0U   | 4.4U        | 2.9U   | 1.7U       | 13          | 3.5U | 3.2U | 3.3U       | 2.5U | 4.2U       | 3.2U        | 50U           |                    |                          |                        |
| PCBs (ppb, dry weight)             |            |        |            |        |        |        |             |        |               |        |             |        |            |             |      |      |            |      |            |             |               |                    |                          |                        |
| PCB 1242                           | 10U        | 7.3U   | 10U        | 6.9U   | 8.9U   | 7.6U   | 9.5U        | 7.4U   | 38U           | 7.6U   | 11U         | 7.3U   | 8.6U       | 10U         | 8.8U | 7.9U | 8.4U       | 6.3U | 10U        | 8U          | 130U          |                    |                          |                        |
| PCB 1248                           | 10U        | 7.3U   | 10U        | 6.9U   | 8.9U   | 7.6U   | 9.5U        | 7.4U   | 38U           | 7.6U   | 11U         | 7.3U   | 8.6U       | 10U         | 8.8U | 7.9U | 8.4U       | 6.3U | 10U        | 8U          | 130U          |                    |                          |                        |
| PCB 1254                           | 310        | 7.3U   | 720        | 6.9U   | 150    | 7.6U   | 1100        | 47     | 800           | 73     | 1100        | 33     | 190        | 1100        | 120  | 67   | 8.4U       | 35   | 860        | 1900        | 8000          |                    |                          |                        |
| PCB 1260                           | 10U        | 7.3U   | 10U        | 6.9U   | 8.9U   | 7.6U   | 9.5U        | 7.4U   | 38U           | 7.6U   | 11U         | 7.3U   | 8.6U       | 10U         | 8.8U | 7.9U | 270        | 6.3U | 10U        | 8U          | 130U          |                    |                          |                        |
| Total PCBs                         | <u>310</u> | 7.3U   | <u>720</u> | 6.9U   | 150    | 7.6U   | <u>1100</u> | 47     | <u>800</u>    | 73     | <u>1100</u> | 33     | <u>190</u> | <u>1100</u> | 120  | 67   | <u>270</u> | 35   | <u>860</u> | <u>1900</u> | 8000          | 22.7               | 180                      | 50000                  |
| SEMI-VOLATILES (ppb, dry wt)       |            |        |            |        |        |        |             |        |               |        |             |        |            |             |      |      |            |      |            |             |               |                    |                          |                        |
| Naphthalene                        | 20         | 7.3U   | 13         | 6.9U   | 8.9U   | 7.6U   | 19          | 380    | 62            | 3000   | 24          | 7.3U   | 8.6U       | 11          | 19   | 7.9U | 9.9        | 6.3U | 130        | 43          | 130000        | 160                | 2100                     |                        |
| Acenaphthylene                     | 90         | 7.3U   | 47         | 6.9U   | 25     | 7.6U   | 76          | 15U*   | 260           | 17     | 65U*        | 22U*   | 34U*       | 32          | 21   | 7.9U | 8.4U       | 6.3U | 75         | 52          | 63U*          | 44                 | 640                      |                        |
| Acenaphthene                       | 31U*       | 7.3U   | 20         | 6.9U   | 8.9U   | 7.6U   | 51          | 180    | 1200          | 520    | 65U*        | 26     | 34U*       | 28          | 18U* | 7.9U | 13         | 6.3U | 150        | 190         | 30000         |                    |                          |                        |
| Fluorene                           | 59         | 7.3U   | 10U        | 15     | 18     | 7.6U   | 76          | 210    | 910           | 400    | 76U*        | 48     | 43U*       | 51          | 33   | 11   | 38         | 9.6  | 190        | 190         | 25000         | 19                 | 540                      |                        |
| Phenanthrene                       | 330        | 16     | 180        | 45     | 130    | 7.6U   | 550         | 660    | 2900          | 1200   | 330         | 140    | 72         | 220         | 170  | 130  | 220        | 23   | 1200       | 990         | 80000         | 240                | 1500                     |                        |
| Anthracene                         | 230        | 7.3U   | 190        | 22     | 69     | 7.6U   | 270         | 130    | 3200          | 530    | 280         | 81U*   | 69U*       | 120         | 79   | 35   | 67         | 13U  | 540        | 410         | 11000         | 85.3               | 1100                     |                        |
| Fluoranthene                       | 650        | 19     | 600        | 90     | 410    | 7.6U   | 970         | 610    | 13000         | 2300   | 1100        | 340    | 260        | 630         | 490  | 270  | 470        | 56   | 2300       | 2200        | 28000         | 600                | 5100                     |                        |
| Pyrene                             | 1300       | 39     | 4100       | 130    | 550    | 7.6U   | 2300        | 830    | 11000         | 1800   | 3500        | 470    | 1200       | 1800        | 900  | 510  | 640        | 140  | 4000       | 5100        | 25000         | 665                | 2600                     |                        |
| Benzo(a)anthracene                 | 610        | 22U*   | 560        | 44     | 320    | 7.6U   | 1500        | 250    | 7400          | 690    | 720         | 130    | 260        | 450         | 330  | 140  | 230        | 29   | 1200       | 1200        | 4500          | 261                | 1600                     |                        |
| Chrysene                           | 1000       | 22U*   | 740        | 63     | 510    | 7.6U   | 110U*       | 59U*   | 11000         | 870    | 940         | 160    | 310        | 490         | 440  | 250  | 350        | 52   | 2100       | 1700        | 4500          | 384                | 2800                     |                        |
| Benzo(b)fluoranthene               | 2300       | 53     | 1300       | 44     | 890    | 7.6U   | 3600        | 44U*   | 14000         | 53U*   | 1300        | 150    | 480        | 1100        | 880  | 320  | 330        | 67   | 2500       | 3000        | 2300          |                    |                          |                        |
| Benzo(k)fluoranthene               | 2300       | 32     | 970        | 33     | 740    | 7.6U   | 130U*       | 44U*   | 11000         | 380    | 1000        | 100    | 400        | 530         | 560  | 220  | 230        | 44U* | 2300       | 2500        | 1600          |                    |                          |                        |
| Benzo(a)pyrene                     | 2500       | 29U*   | 1200       | 27U*   | 830    | 15U*   | 1700        | 250    | 11000         | 520    | 1400        | 120    | 450        | 890         | 670  | 250  | 150U*      | 57U* | 2500       | 3000        | 1900          | 430                | 1600                     |                        |
| Indeno[1,2,3-CD]pyrene             | 1100       | 29U*   | 530        | 27U*   | 390    | 15U    | 910         | 44U*   | 5600          | 300    | 110U*       | 51U*   | 260        | 550         | 280  | 140  | 100U*      | 38U* | 1100       | 1600        | 1000          |                    |                          |                        |
| Dibenzo(a,h)anthracene             | 540        | 29U*   | 21U        | 27U*   | 130    | 15U    | 340         | 52U*   | 1200          | 130    | 130U*       | 51U*   | 78U*       | 280         | 70U* | 48U* | 100U*      | 51U* | 420        | 510         | 880           | 63.4               | 260                      |                        |
| Benzo[ghi]perylene                 | 500        | 36U*   | 390        | 34U*   | 340    | 15U*   | 95U*        | 52U*   | 4800          | 180    | 350         | 80U*   | 110        | 470         | 150  | 190  | 130U*      | 44U* | 980        | 1200        | 140U*         |                    |                          |                        |
| Benzo(e)pyrene                     | 1900       | 42     | 880        | 34U*   | 710    | 9.4    | 950         | 270    | 8300          | 440    | 1100        | 98     | 400        | 790         | 550  | 220  | 230        | 44U* | 1800       | 2100        | 1300          |                    |                          |                        |
| Total detectable PAHs              | 15000      | 200    | 12000      | 490    | 6100   | 9.4    | 13000       | 3800   | <u>110000</u> | 13000  | 12000       | 1800   | 4200       | 8400        | 5600 | 2700 | 2800       | 380  | 24000      | 24585       | <u>350000</u> | 4022               | 44792                    |                        |
| Total Phthalates                   | 960        | 140    | 460        | 180    | 1300   | 130    | 19U         | 44     | 930           | 59     | 240         | 78     | 330        | 750         | 1000 | 1300 | 2600       | 380  | 3400       | 778         | 280           | 1700               | 9600                     |                        |
| Total Phenols                      | 36         | 90     | 35         | 26     | 120    | 29     | 180         | 110    | 65            | 52     | 940         | 370    | 330        | 26          | 290  | 83   | 69         | 93   | 61         | 90          | 46000         |                    |                          |                        |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

Boxed values equal or exceed the San Francisco Bay Threshold.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

Table 3. Elutriate Chemistry Results: Port of Los Angeles - Southwest Slip Project . (Page 1 of 2)

| Analytical Parameter                     | A Top<br>Comp | A Bot<br>Comp | B Top<br>Comp | B Bot<br>Comp | C Top<br>Comp | C Bot | D Comp | ABCD Comp<br>(Salt Water) | WQS Salt<br>Water Max<br>EPA 2000 | WQS Salt<br>Water Cont<br>EPA 2000 |
|------------------------------------------|---------------|---------------|---------------|---------------|---------------|-------|--------|---------------------------|-----------------------------------|------------------------------------|
| CONVENTIONALS                            | оор           | оор           | оор           | оор           | оор           | оор   | 2 сор  | (can rrate)               | 2.712000                          | 2.7.2000                           |
| Ammonia (mg/L)                           | 4.4           | 11            | 2.4           | 6.5           | 5.6           | 11    | 6.4    | 0.1U                      |                                   |                                    |
| Water soluble sulfides (mg/L)            | 0.1U          | 0.1U          | 0.1U          | 0.1U          | 0.1U          | 0.1U  | 0.1U   | 0.1U                      |                                   |                                    |
| Oil and Grease (mg/L)                    | 5U            | 5U            | 5U            | 5U            | 5U            | 5U    | 5U     | 5U                        |                                   |                                    |
| METALS (μg/L, wet wt)                    |               |               |               |               |               |       |        |                           |                                   |                                    |
| Arsenic                                  | 6.5           | 12            | 5.9           | 3.7           | 12            | 8.2   | 9.1    | 1.0                       | 69                                | 36                                 |
| Cadmium                                  | 0.1U          | 0.15          | 0.18          | 0.56          | 0.7           | 0.26  | 0.59   | 1.1                       | 42                                | 9.3                                |
| Chromium                                 | 17            | 23            | 17            | 21            | 19            | 19    | 17     | 19                        | 1100                              | 50                                 |
| Copper                                   | 2.8           | 7.0           | 3.8           | 3.5           | 3.4           | 1.5   | 2.6    | 3.1                       | 4.8                               | 3.1                                |
| Lead                                     | 1U            | 2.1           | 1U            | 1U            | 2.0           | 1U    | 1U     | 1U                        | 210                               | 8.1                                |
| Mercury                                  | 0.045         | 0.071         | 0.077         | 0.042         | 0.076         | 0.01U | 0.16   | 0.076                     | 0.16(a)                           | 0.04 (b)                           |
| Nickel                                   | 4.1           | 6.7           | 4.4           | 7             | 3.4           | 3.0   | 3.8    | 8.4                       | 74.0                              | 8.2                                |
| Selenium                                 | 1U            | 1U            | 1U            | 1             | 1U            | 1U    | 1U     | 1U                        | 290                               | 71                                 |
| Silver                                   | 0.1U          | 0.1U          | 0.1U          | 0.1U          | 0.1U          | 0.1U  | 0.1U   | 0.1U                      | 1.90                              |                                    |
| Zinc                                     | 5U            | 9.9           | 7.6           | 16            | 7.9           | 8     | 8.6    | 12                        | 90                                | 81                                 |
| ORGANOTINS (ppt (ng/L) wet weight)       |               |               |               |               |               |       |        |                           |                                   |                                    |
| Dibutyltin                               | 2U            | 2U            | 2U            | 2U            | 2U            | 2U    | 4.9    | 7.2                       |                                   |                                    |
| Monobutyltin                             | 2UR           | 2UR           | 2UR           | 2UR           | 2UR           | 2UR   | 2UR    | 2UR                       |                                   |                                    |
| Tetrabutyltin                            | 2U            | 2U            | 2U            | 2U            | 2U            | 2.2   | 2U     | 2U                        |                                   |                                    |
| Tributyltin                              | 49.0          | 2U            | 2U            | 2U            | 10.0          | 2U    | 3.1    | 2U                        |                                   |                                    |
| CHLORINATED PESTICIDES (ppb, wet weight) |               |               |               |               |               |       |        |                           |                                   |                                    |
| Aldrin                                   | 0.05U         | 0.05U         | 0.05U         | 0.05U         | 0.05U         | 0.05U | 0.05U  | 0.05U                     | 1.3                               |                                    |
| alpha-BHC                                | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     |                                   |                                    |
| beta-BHC                                 | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     |                                   |                                    |
| delta-BHC                                | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     |                                   |                                    |
| gamma-BHC (lindane)                      | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     | 0.16                              |                                    |
| alpha-Chlordane                          | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     | 0.09                              | 0.004                              |
| gamma-Chlordane                          | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     | 0.09                              | 0.004                              |
| 4,4'-DDD                                 | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.031  | 0.02U                     |                                   |                                    |
| 4,4'-DDE                                 | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.022  | 0.02U                     |                                   |                                    |
| 4,4'-DDT                                 | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.02U  | 0.02U                     | 0.13                              | 0.001                              |
| Total DDTs                               | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U         | 0.02U | 0.053  | 0.02U                     |                                   |                                    |

a. Mercury values not established under the California Toxics Rule. Value is the daily maximum from the 1997 Ocean Plan.

 $b.\ Mercury\ values\ not\ established\ under\ the\ California\ Toxics\ Rule.\ Value\ is\ the\ 6-month\ median\ from\ the\ 1997\ Ocean\ Plan.$ 

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot; U\* " Qualifier denotes reporting limit raised due to matrix interference

Table 3. Elutriate Chemistry Results: Port of Los Angeles - Southwest Slip Project . (Page 2 of 2)

|                                    | А Тор | A Bot | В Тор | B Bot | С Тор | C Bot |        | ABCD Comp    | WQS Salt<br>Water Max | WQS Salt<br>Water Cont |
|------------------------------------|-------|-------|-------|-------|-------|-------|--------|--------------|-----------------------|------------------------|
| Analytical Parameter               | Comp  | Comp  | Comp  | Comp  | Comp  | Comp  | D Comp | (Salt Water) | EPA 2000              | EPA 2000               |
| CHLORINATED PESTICIDES (Continued) |       |       |       |       |       |       |        |              |                       |                        |
| Dieldrin                           | 0.02U  | 0.02U        | 0.71                  | 0.0019                 |
| Endosulfan I                       | 0.02U  | 0.02U        | 0.034                 | 0.0087                 |
| Endosulfan II                      | 0.02U  | 0.02U        | 0.034                 | 0.0087                 |
| Endosulfan sulfate                 | 0.02U  | 0.02U        |                       |                        |
| Endrin                             | 0.02U  | 0.02U        | 0.037                 | 0.0023                 |
| Endrin Aldehyde                    | 0.02U  | 0.02U        |                       |                        |
| Endrin Ketone                      | 0.02U  | 0.02U        |                       |                        |
| Heptachlor                         | 0.02U  | 0.02U        |                       |                        |
| Heptachlor epoxide                 | 0.02U  | 0.02U        |                       |                        |
| Toxaphene                          | 0.5U   | 0.5U         |                       |                        |
| Methoxychor                        | 0.05U  | 0.05U        |                       |                        |
| PCBs (ppb, wet weight)             |       |       |       |       |       |       |        |              |                       |                        |
| PCB 1242                           | 0.5U   | 0.5U         |                       |                        |
| PCB 1248                           | 0.5U   | 0.5U         |                       |                        |
| PCB 1254                           | 0.5U   | 0.5U         |                       |                        |
| PCB 1260                           | 0.5U   | 0.5U         |                       |                        |
| Total PCBs                         | 0.5U   | 0.5U         |                       | 0.03                   |
| SEMI-VOLATILES (ppb, wet wt)       |       |       |       |       |       |       |        |              |                       |                        |
| Naphthalene                        | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 15     | 0.1U         |                       |                        |
| Acenaphthylene                     | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.3U*  | 0.1U         |                       |                        |
| Acenaphthene                       | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.77   | 0.1U         |                       |                        |
| Fluorene                           | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.6    | 0.1U         |                       |                        |
| Phenanthrene                       | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.66   | 0.1U         |                       |                        |
| Anthracene                         | 0.1U   | 0.1U         |                       |                        |
| Fluoranthene                       | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.2   | 0.1   | 0.14   | 0.1U         |                       |                        |
| Pyrene                             | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.21   | 0.1U         |                       |                        |
| Benzo(a)anthracene                 | 0.1U   | 0.1U         |                       |                        |
| Chrysene                           | 0.1U   | 0.1U         |                       |                        |
| Benzo(b)fluoranthene               | 0.1U   | 0.1U         |                       |                        |
| Benzo(k)fluoranthene               | 0.1U   | 0.1U         |                       |                        |
| Benzo(a)pyrene                     | 0.1U   | 0.1U         |                       |                        |
| Indeno[1,2,3-CD]pyrene             | 0.2U   | 0.2U         |                       |                        |
| Dibenzo(a,h)anthracene             | 0.2U   | 0.2U         |                       |                        |
| Benzo[ghi]perylene                 | 0.2U   | 0.2U         |                       |                        |
| Total detectable PAHs              | 0.1U  | 0.1U  | 0.1U  | 0.1U  | 0.2   | 0.1   | 17.38  | 0.1U         |                       | 15                     |
| Total Phenols                      | 0.2U   | 0.2U         |                       |                        |

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot; U\* " Qualifier denotes reporting limit raised due to matrix interference

Table 4. Port of Los Angeles 2001 Deepening Program - Southwest Slip Project. Toxicity Results.

|                        |        |            |       | SOI   | JTHWE | ST BASII | N 2001 |      |     |         |
|------------------------|--------|------------|-------|-------|-------|----------|--------|------|-----|---------|
|                        |        |            |       |       |       |          |        | LA2  | LA3 |         |
|                        | A1 TOP | A1 BOT     | В ТОР | В ВОТ | C TOP | C BOT    | D      | REF  | REF | CONTROL |
| Water Column Bioassays |        |            |       |       |       |          |        |      |     |         |
| (LC50 / EC50)          |        |            |       |       |       |          |        |      |     |         |
| Mytilus Survival       | 70.6%  | 22.7%      | >100% | >100% | NT    | 20.6%    | NT     | NA   | NA  | >100%   |
| Mytilus Development    | 71.5%  | 22.6%      | >100% | >100% | NT    | 21.9%    | NT     | NA   | NA  | >100%   |
| Mysidopsis Survival    | >100%  | >100%      | >100% | >100% | NT    | >100%    | NT     | NA   | NA  | >100%   |
| Menidia Survival       | >100%  | >100%      | >100% | >100% | NT    | >100%    | NT     | NA   | NA  | >100%   |
| Benthic Bioassays      |        |            |       |       |       |          |        |      |     |         |
| (% Survival)           |        |            |       |       |       |          |        |      |     |         |
| Rhepoxynius            | 86%    | <u>43%</u> | 83%   | 77%   | NT    | 94%      | NT     | 96%  | 76% | 98%     |
| Eohaustorius           | NT     | NT         | NT    | NT    | NT    | NT       | NT     | NT   | NT  | NT      |
| Ampelisca              | 96%    | 98%        | 95%   | 95%   | NT    | 92%      | NT     | 97%  | 98% | 98%     |
| Nephtys                | 100%   | 86%        | 94%   | 86%   | NT    | 86%      | NT     | 100% | 98% | 98%     |
| Mysidopsis             | NT     | NT         | NT    | NT    | NT    | NT       | NT     | NT   | NT  | NT      |

Bolded values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2.

Bolded and underlined values indicate toxicity exceeding Limiting Permissible Concentration (LPC) at LA2 and LA3.

NA = Not applicable - references not tested in water column bioassays.

NT = Not tested in this program.

Table 5. Mean Concentration of Detected Contaminants - Macoma nasuta Bioaccumulation

|                                          |              | SOUTHWEST   | BASIN 2001        |                   |
|------------------------------------------|--------------|-------------|-------------------|-------------------|
| Analytical Parameter                     | В ТОР        | В ВОТ       | LA2               | LA3               |
| METALS (mg/Kg, dry wt)                   |              |             |                   |                   |
| Arsenic                                  | 23.6         | 25.8        | 25.4              | 23.4              |
| Chromium                                 | 3.92         | <u>5.02</u> | 2.74              | 1.84              |
| Copper                                   | 15.8         | 13.4        | 14.0              | 12.8              |
| Lead                                     | <u>4.90</u>  | 1.48        | 2.24              | 1.36              |
| Nickel                                   | 5.56         | <u>7.10</u> | 3.54              | 2.86              |
| Selenium                                 | 1.36         | 1.38        | 1.56              | 1.44              |
| Zinc                                     | 99.8         | 83.0        | 95.4              | 78.4              |
| SEMI-VOLATILES (ppb, dry wt)             |              |             |                   |                   |
| Fluoranthene                             | <u>116.2</u> | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Pyrene                                   | <u>432</u>   | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Chrysene                                 | <u>86.6</u>  | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Perylene                                 | <u>104.2</u> | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Benzo(b)fluoranthene                     | <u>1680</u>  | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Benzo(k)fluoranthene                     | <u>1256</u>  | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Benzo(a)pyrene                           | <u>1096</u>  | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Indeno[1,2,3-CD]pyrene                   | <u>168</u>   | ND          | 87 <sup>a</sup>   | 93 <sup>a</sup>   |
| Benzo[ghi]perylene                       | <u>158</u>   | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| Total detectable PAHs                    | 5950         | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |
| CHLORINATED PESTICIDES (ppb, dry weight) |              |             |                   |                   |
| DDE                                      | <u>78.0</u>  | ND          | 45.4              | 35.6              |
| PCBs (ppb, dry weight)                   |              |             |                   |                   |
| Aroclor 1254                             | <u>366</u>   | ND          | 44.2 <sup>a</sup> | 46.4 <sup>a</sup> |

Bold and underline values \* versus both LA2 and LA3.

Bold values \* versus LA3 only.

Underline values \* versus LA2 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.

Table 6. Mean Concentration of Detected Contaminants - Nephtys caecoides Bioaccumulation

|                                          | SOUTHWEST BASIN 2001 |             |                   |                   |  |  |  |  |  |  |  |
|------------------------------------------|----------------------|-------------|-------------------|-------------------|--|--|--|--|--|--|--|
| Analytical Parameter                     | в тор                | в вот       | LA2               | LA3               |  |  |  |  |  |  |  |
| METALS (mg/Kg, dry wt)                   |                      |             |                   |                   |  |  |  |  |  |  |  |
| Arsenic                                  | <u>20.0</u>          | <u>17.6</u> | 15.6              | 14.6              |  |  |  |  |  |  |  |
| Cadmium                                  | <u>1.02</u>          | <u>0.94</u> | 0.74              | 0.69              |  |  |  |  |  |  |  |
| Chromium                                 | <u>6.74</u>          | 2.88        | 0.66              | 0.66              |  |  |  |  |  |  |  |
| Copper                                   | <u>11.9</u>          | 11.4        | 8.4               | 5.8               |  |  |  |  |  |  |  |
| Lead                                     | <u>3.74</u>          | ND          | 0.30 <sup>a</sup> | 0.30 <sup>a</sup> |  |  |  |  |  |  |  |
| Nickel                                   | <u>8.56</u>          | 5.78        | 3.86              | 3.36              |  |  |  |  |  |  |  |
| Selenium                                 | <u>3.06</u>          | 2.70        | 2.40              | 2.34              |  |  |  |  |  |  |  |
| Zinc                                     | <u>176</u>           | <u>130</u>  | 114               | 95                |  |  |  |  |  |  |  |
| SEMI-VOLATILES (ppb, dry wt)             |                      |             |                   |                   |  |  |  |  |  |  |  |
| Acenaphthene                             | 78.2                 | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Acenaphthylene                           | 40.4                 | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Fluorene                                 | 92.2                 | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Phenanthrene                             | 1602 <sup>b</sup>    | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Anthracene                               | <u>486</u>           | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Fluoranthene                             | 3128 <sup>b</sup>    | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Pyrene                                   | 3164 <sup>b</sup>    | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Benzo(a)anthracene                       | 1310 <sup>b</sup>    | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Chrysene                                 | <u>2010</u>          | 48.4        | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Perylene                                 | <u>498</u>           | ND          | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Benzo(b)fluoranthene                     | 2900                 | 130.4       | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Benzo(k)fluoranthene                     | <u>2460</u>          | 130.4       | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Benzo(a)pyrene                           | 2440                 | 114.4       | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Indeno[1,2,3-CD]pyrene                   | 1404                 | 82          | 56.3 <sup>a</sup> | 59.0 <sup>a</sup> |  |  |  |  |  |  |  |
| Dibenzo(a,h)anthracene                   | 382                  | ND          | 56.3 <sup>a</sup> | 59.0 <sup>a</sup> |  |  |  |  |  |  |  |
| Benzo[ghi]perylene                       | 1252                 | 54.4        | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| Total detectable PAHs                    | 25320                | 424         | 28.0 <sup>a</sup> | 29.4 <sup>a</sup> |  |  |  |  |  |  |  |
| CHLORINATED PESTICIDES (ppb, dry weight) |                      |             |                   |                   |  |  |  |  |  |  |  |
| DDE                                      | <u>143</u>           | 9.4         | 58.8              | 59.4              |  |  |  |  |  |  |  |
| Endosulfan I                             | 8.7                  | ND          | 5.5 <sup>a</sup>  | 5.9 <sup>a</sup>  |  |  |  |  |  |  |  |
| Endosulfan II                            | 11.5                 | ND          | 5.5 <sup>a</sup>  | 5.9 <sup>a</sup>  |  |  |  |  |  |  |  |
| Dieldrin                                 | 10.2                 | ND          | 5.5 <sup>a</sup>  |                   |  |  |  |  |  |  |  |
| PCBs (ppb, dry weight)                   |                      |             |                   |                   |  |  |  |  |  |  |  |
| Aroclor 1254                             | <u>1140</u>          | ND          | 27.8 <sup>a</sup> | 29.2 <sup>a</sup> |  |  |  |  |  |  |  |

Bold and underline values \* versus both LA2 and LA3.

Underline values \* versus LA3 only.

ND = Not detected

<sup>&</sup>lt;sup>a</sup> Value represents 1/2 reporting limit, since all replicates were ND.

<sup>&</sup>lt;sup>b</sup> Not statistically significant due to large variance within the B-TOP group of five replicate samples.

Table 7. DI-WET Chemistry Results: Port of Los Angeles - Southwest Slip Project. (all values in μg/L)

| Analytical Parameter  | B Top<br>Comp | C Top<br>Comp | C Bot<br>Comp | D<br>Comp | WQS Salt WQS Salt<br>Water Max Water Cont<br>EPA 2000 EPA 2000 |
|-----------------------|---------------|---------------|---------------|-----------|----------------------------------------------------------------|
| METALS (μg/L, wet wt) |               |               |               |           |                                                                |
| Arsenic               |               |               |               |           |                                                                |
| Cadmium               |               |               |               |           |                                                                |
| Chromium              |               |               |               |           |                                                                |
| Copper                |               | <u>16.0</u>   |               |           | 4.8 3                                                          |
| Lead                  | 1U            | 1U            | 1U            | 1U        | 210 8.1                                                        |
| Mercury               |               | 0.23          | 0.36          |           | 0.16(a) 0.04(b)                                                |
| Nickel                |               |               |               |           |                                                                |
| Selenium              |               |               |               |           |                                                                |
| Silver                |               |               |               |           |                                                                |
| Zinc                  |               |               |               |           |                                                                |

a. Mercury values not established under the California Toxics Rule. Value is the daily maximum from the 1997 Ocean Plan.

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

"U" Qualifier denotes analyte not detected at method detection limit

b. Mercury values not established under the California Toxics Rule. Value is the 6-month median from the 1997 Ocean Plan.



## **APPENDIX C-1**

## GRAB SAMPLE DATA, SHALLOW WATER HABITAT EXTENSION

(Kinnetic Laboratories/ToxScan, 2001a)

## Cabrillo Shallow Water Habitat Expansion Area



Table 1. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Project Cabrillo Shallow Water Habitat Expansion Area. Grab Samples. (Page 1 of 2)

|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <del>.</del>       |                    | SW Slip -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D (1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | D (1.40                                                                                   |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cabrillo-1         | Cabrillo-2                                                                     | Cabrillo-3                                                                                                                                                                                                                                                                                          | Cabrillo-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cabrillo-5         | Cabrillo-6         | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ref LA2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ref LA3                                                                                   | ER-L 1995 (dry wt)                                                                                  | ER-M 1995 (dry wt)                                                                                          | Title 22 (wet wt)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.6                                                                                       |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 60.5               | 48.6                                                                           | 59.1                                                                                                                                                                                                                                                                                                | 49.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52.8               | 43.9               | 32.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.4                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 24.2               | 28.6                                                                           | 30.0                                                                                                                                                                                                                                                                                                | 11.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.6               | 43.2               | 27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 28.0                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18                 | 34                                                                             | 22                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 25                 | 14                 | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 15                                                                                        |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2.9                | 8.5                                                                            | 16.00                                                                                                                                                                                                                                                                                               | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.60               | 13                 | 790                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.44                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4.80               | 5.80                                                                           | 5.00                                                                                                                                                                                                                                                                                                | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.20               | 6.10               | 5.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.10                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0.1U               | 0.1U                                                                           | 0.1U                                                                                                                                                                                                                                                                                                | 0.1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1U               | 0.1U               | 0.1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.1U                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1500               | 640                                                                            | 1400                                                                                                                                                                                                                                                                                                | 320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 520                | 360                | 3900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                       |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 360                | 240                                                                            | 540                                                                                                                                                                                                                                                                                                 | 160                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 240                | 280                | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100U                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 46                 | 44                                                                             | 43                                                                                                                                                                                                                                                                                                  | 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 45                 | 46                 | 47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46                                                                                        |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.12               | 3.48                                                                           | 2.68                                                                                                                                                                                                                                                                                                | 1.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.46               | 2.17               | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.81                                                                                      |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 12J                | 15J                                                                            | 13J                                                                                                                                                                                                                                                                                                 | 11J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 11J                | 12J                | 13J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.9J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.6J                                                                                      | 8.2                                                                                                 | 70                                                                                                          | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.6                | 1.4                                                                            | 1.2                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.5                | 0.79               | 2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.81                                                                                      |                                                                                                     | 9.60                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | 20.9                                                                                                | 31.0                                                                                                        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | 1.0                                                                                                 | 2.7                                                                                                         | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 190                | 140                                                                            | 160                                                                                                                                                                                                                                                                                                 | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150                | 130                | <u>730</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                                        | 150                                                                                                 | 410                                                                                                         | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0.0                |                                                                                |                                                                                                                                                                                                                                                                                                     | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40.0               | 0.0                | 000.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 411                                                                                       |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 10                                                                             | 6.5                                                                                                                                                                                                                                                                                                 | 1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 13.0               | 10                 | 94.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                        |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                  | 0.011                                                                          | 0                                                                                                                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.011              | 0.611              | 0.411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.017                                                                                     |                                                                                                     |                                                                                                             | 4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 1400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           | 0.0                                                                                                 | 07                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    |                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                           |                                                                                                     |                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>130</u><br>2.2U | <u><b>99</b></u><br>2.3U                                                       | <u>160</u><br>2.4U                                                                                                                                                                                                                                                                                  | <u>53</u><br>1.7U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>150</u><br>2.2U | <u>130</u><br>2.2U | <u><b>83</b></u><br>2.1U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b><br>1.5U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>7.2</b><br>2.2U                                                                        | 2.2                                                                                                 | 27                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | 15.3<br>60.5<br>24.2<br>18<br>2.9<br>4.80<br>0.1U<br>1500<br>360<br>46<br>3.12 | 15.3 22.9 60.5 48.6 24.2 28.6  18 34 2.9 8.5 4.80 5.80 0.1U 0.1U 1500 640 360 240 46 44 3.12 3.48  12J 15J 1.6 1.4 66 72 140 96 55 38 0.83 0.81 27 27 0.24 0.22 0.70 0.64 190 140  9.8 4.1 1U 1U 1U 1U 2.4 1U 1U 1U 2.4 1U 10 2.2U 2.3U | 15.3 22.9 10.9 60.5 48.6 59.1 24.2 28.6 30.0  18 34 22 2.9 8.5 16.00 4.80 5.80 5.00 0.1U 0.1U 0.1U 1500 640 1400 360 240 540 46 44 43 3.12 3.48 2.68  12J 15J 13J 1.6 1.4 1.2 66 72 75 140 96 140 55 38 46 0.83 0.81 1.6 27 27 31 0.24 0.22 0.26 0.70 0.64 0.61 190 140 160  9.8 4.1 7.7 1U 1U 1U 1U 1U 1U 1U 2.4 1U 6.5  1) 2.2U 2.3U 2.4U | 15.3               | 15.3               | Cabrillo-1         Cabrillo-2         Cabrillo-3         Cabrillo-4         Cabrillo-5         Cabrillo-6           15.3         22.9         10.9         39.2         5.6         12.9           60.5         48.6         59.1         49.5         52.8         43.9           24.2         28.6         30.0         11.3         41.6         43.2           18         34         22         12         25         14           2.9         8.5         16.00         4.80         7.60         13           4.80         5.80         5.00         3.00         6.20         6.10           0.1U         1.0         1.0         1.0         1.0 | Cabrillo-1         Cabrillo-2         Cabrillo-3         Cabrillo-4         Cabrillo-5         Cabrillo-6         5           15.3         22.9         10.9         39.2         5.6         12.9         39.6           60.5         48.6         59.1         49.5         52.8         43.9         32.5           24.2         28.6         30.0         11.3         41.6         43.2         27.9           18         34         22         12         25         14         93           2.9         8.5         16.00         4.80         7.60         13         790           4.80         5.80         5.00         3.00         6.20         6.10         5.90           0.1U         0.0U         0.60         3900         360         3900 <td>  Tabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-4   Cabrillo-5   Cabrillo-6   5   Ref LA2    </td> <td>  Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-4   Cabrillo-5   Cabrillo-6   5   Ref LA2   Ref LA3    </td> <td>  Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-5   Cabrillo-6   S   Ref LA2   Ref LA3   ER-L 1995 (dry wt)    </td> <td>  Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-6   Cab</td> | Tabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-4   Cabrillo-5   Cabrillo-6   5   Ref LA2 | Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-4   Cabrillo-5   Cabrillo-6   5   Ref LA2   Ref LA3 | Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-5   Cabrillo-6   S   Ref LA2   Ref LA3   ER-L 1995 (dry wt) | Cabrillo-1   Cabrillo-2   Cabrillo-3   Cabrillo-6   Cab |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

Boxed values equal or exceed the San Francisco Bay Threshold.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

<sup>&</sup>quot; J " Qualifier denotes analyte concentration reported as an estimate

Table 1. Bulk Sediment Chemistry Results: Port of Los Angeles 2001 Deepening Project Cabrillo Shallow Water Habitat Expansion Area. Grab Samples. (Page 2 of 2)

| Analytical Parameter                     | Cabrillo-1          | Cabrillo-2 | Cabrillo-3        | Cabrillo-4  | Cabrillo-5  | Cabrillo-6  | SW Slip -5            | Ref LA2      | Ref LA3    | ER-L 1995 (dry wt) | ER-M 1995 (dry wt) | Title 22 (wet wt) |
|------------------------------------------|---------------------|------------|-------------------|-------------|-------------|-------------|-----------------------|--------------|------------|--------------------|--------------------|-------------------|
| CHLORINATED PESTICIDES (Continued)       |                     |            |                   |             |             |             |                       |              |            |                    |                    |                   |
| Dieldrin                                 | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Endosulfan I                             | 2.2U                | 20         | 28                | 8.9         | 4.6         | 5.6         | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Endosulfan II                            | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 23                    | 1.5U         | 2.2U       |                    |                    |                   |
| Endosulfan sulfate                       | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 2.8          | 2.2U       |                    |                    |                   |
| Endrin                                   | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Endrin Aldehyde                          | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Endrin Ketone                            | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Heptachlor                               | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 3.8                   | 1.5U         | 2.2U       |                    |                    |                   |
| Heptachlor epoxide                       | 2.2U                | 2.3U       | 2.4U              | 1.7U        | 2.2U        | 2.2U        | 2.1U                  | 1.5U         | 2.2U       |                    |                    |                   |
| Toxaphene                                | 22U                 | 23U        | 24U               | 17U         | 22U         | 22U         | 21U                   | 15U          | 22U        |                    |                    |                   |
| Methoxychor                              | 4.4U                | 4.5U       | 4.7U              | 3.4U        | 4.4U        | 4.4U        | 4.2U                  | 2.9U         | 4.4U       |                    |                    |                   |
| PCBs (ppb, dry weight)                   |                     |            |                   |             |             |             |                       |              |            |                    |                    |                   |
| PCB 1242                                 | 11U                 | 11U        | 12U               | 8.6U        | 11U         | 11U         | 11U                   | 7.3U         | 11U        |                    |                    |                   |
| PCB 1248                                 | 11U                 | 11U        | 12U               | 8.6U        | 11U         | 11U         | 11U                   | 7.3U         | 11U        |                    |                    |                   |
| PCB 1254                                 | 110                 | 88         | 100               | 33          | 88          | 75          | 780                   | 7.3U         | 11U        |                    |                    |                   |
| PCB 1260                                 | 11U                 | 11U        | 12U               | 8.6U        | 11U         | 11U         | 11U                   | 7.3U         | 11U        |                    |                    |                   |
| Total PCBs                               | 110                 | 88         | 100               | 33          | 88          | 75          | 780                   | 7.3U         | 11U        | 22.7               | 180                | 50000             |
| SEMI-VOLATILES (ppb, dry wt)             |                     |            |                   |             |             |             |                       |              |            |                    |                    |                   |
| Naphthalene                              | 20                  | 11U        | 14                | 8.6U        | 14          | 11U         | 30                    | 7.3U         | 11U        | 160                | 2100               |                   |
| Acenaphthylene                           | 12                  | 11U        | 12U               | 8.7         | 11U         | 11U         | 420                   | 7.3U         | 11U        | 44                 | 640                |                   |
| Acenaphthene                             | 13                  | 11U        | 12U               | 8.6U        | 11U         | 11U         | 51                    | 7.3U         | 11U        |                    |                    |                   |
| Fluorene                                 | 20                  | 11U        | 19                | 8.6U        | 12          | 11U         | 230                   | 7.3U         | 11U        | 19                 | 540                |                   |
| Phenanthrene                             | 83                  | 32         | 66                | 27          | 57          | 45          | 1100                  | 7.3U         | 11U        | 240                | 1500               |                   |
| Anthracene                               | 68                  | 38         | 63                | 33          | 60          | 45          | 1400                  | 7.3U         | 11U        | 85.3               | 1100               |                   |
| Fluoranthene                             | 240                 | 220        | 220               | 110         | 200         | 180         | 1300                  | 7.3U         | 14         | 600                | 5100               |                   |
| Pyrene                                   | 310                 | 180        | 260               | 140         | 270         | 260         | 17000                 | 92U          | 140U       | 665                | 2600               |                   |
| Benzo(a)anthracene                       | 190                 | 140        | 180               | 79          | 150         | 120         | 3600                  | 92U*         | 15         | 261                | 1600               |                   |
| . ,                                      | 330                 | 190        |                   |             |             |             |                       |              | 26         | 384                | 2800               |                   |
| Chrysene                                 |                     |            | 240               | 100         | 210         | 200         | <u>8500</u>           | 22U*         |            | 304                | 2000               |                   |
| Benzo(b)fluoranthene                     | 440                 | 190        | 470               | 150         | 380         | 240         | 23000                 | 36U*         | 22U*       |                    |                    |                   |
| Benzo(k)fluoranthene                     | 330                 | 160        | 94U*              | 110         | 55U*        | 170         | 21000                 | 36U*<br>44U* | 22U*       | 430                | 1600               |                   |
| Benzo(a)pyrene<br>Indeno[1,2,3-CD]pyrene | <b>810</b><br>130U* | 230<br>130 | <b>680</b><br>120 | 140<br>68U* | 380<br>66U* | 260<br>54U* | <u>23000</u><br>14000 | 44U*<br>66U* | 44<br>22U  | 430                | 1000               |                   |
| Dibenzo(a,h)anthracene                   | 130U*               | 45U*       | 71U*              | 60U*        | 55U*        | 54U*        | <b>5300</b>           | 51U*         | 22U<br>22U | 63.4               | 260                |                   |
| Benzo[ghi]perylene                       | 280                 | 120U*      | 82U*              | 94U*        | 120U*       | 120U*       | 9100                  | 80U*         | 120U*      | 00.1               | 200                |                   |
| Benzo(e)pyrene                           | 570                 | 180        | 470               | 140         | 290         | 260         | 17000                 | 44U*         | 35         |                    |                    |                   |
| Total detectable PAHs                    | 3700                | 1700       | 2800              | 1000        | 2000        | 1800        | 150000                | 13U          | 130        | 4022               | 44792              |                   |
| Total Phthalates                         | 410                 | 27         | 120               | 320         | 110         | 110         | 150                   | 110          | 160        | 1700               | 9600               |                   |
| Total Phenois                            | 22U                 | 99         | 82                | 41          | 380         | 140         | 42                    | 23           | 24         |                    |                    |                   |

Bold values equal or exceed the ERL.

Bold and underlined values equal or exceed the ERM.

Boxed values equal or exceed the San Francisco Bay Threshold.

Comp C contains cores B5 and B6

<sup>&</sup>quot;U" Qualifier denotes analyte not detected at method detection limit

<sup>&</sup>quot;U\*" Qualifier denotes reporting limit raised due to matrix interference

Table 2. Elutriate Chemistry Results: Port of Los Angeles 2001 Deepening Project Cabrillo Shallow Water Habitat Expansion Area. (Page 1 of 2)

| Analytical Parameter                     | Cabrillo Compostie Area | (Salt Water) | WQS Salt Water Max<br>EPA 2000 | WQS Salt Water Cont EPA 2000 |
|------------------------------------------|-------------------------|--------------|--------------------------------|------------------------------|
| CONVENTIONALS                            |                         |              |                                |                              |
| Ammonia (mg/L)                           | 0.97                    | 0.1U         |                                |                              |
| Water soluble sulfides (mg/L)            | 0.1U                    | 0.1U         |                                |                              |
| Oil and Grease (mg/L)                    | 5U                      | 5U           |                                |                              |
| METALS (μg/L, wet wt)                    |                         |              |                                |                              |
| Arsenic                                  | 8.5                     | 0.95         | 69                             | 36                           |
| Cadmium                                  | 0.1U                    | 0.1U         | 42                             | 9.3                          |
| Chromium                                 | 12                      | 12           | 1100                           | 50                           |
| Copper                                   | <u>5.1</u>              | 4.7          | 4.8                            | 3.1                          |
| Lead                                     | 1U                      | 1U           | 210                            | 8.1                          |
| Mercury                                  | 0.033                   | 0.034        | 0.16(a)                        | 0.04 (b)                     |
| Nickel                                   | 13                      | 10           | 74.0                           | 8.2                          |
| Selenium                                 | 1U                      | 1U           | 290                            | 71                           |
| Silver                                   | 0.26                    | 0.31         | 1.90                           |                              |
| Zinc                                     | 9.0                     | 9.9          | 90                             | 81                           |
| ORGANOTINS (ppt (ng/L) wet weight)       |                         |              |                                |                              |
| Dibutyltin                               | 2U                      | 2U           |                                |                              |
| Monobutyltin                             | 2UR                     | 2UR          |                                |                              |
| Tetrabutyltin                            | 2U                      | 2U           |                                |                              |
| Tributyltin                              | 2U                      | 2U           |                                |                              |
| CHLORINATED PESTICIDES (ppb, wet weight) |                         |              |                                |                              |
| Aldrin                                   | 0.05U                   | 0.05U        | 1.3                            |                              |
| alpha-BHC                                | 0.02U                   | 0.02U        |                                |                              |
| beta-BHC                                 | 0.02U                   | 0.02U        |                                |                              |
| delta-BHC                                | 0.02U                   | 0.02U        |                                |                              |
| gamma-BHC (lindane)                      | 0.02U                   | 0.02U        | 0.16                           |                              |
| alpha-Chlordane                          | 0.02U                   | 0.02U        | 0.09                           | 0.004                        |
| gamma-Chlordane                          | 0.02U                   | 0.02U        | 0.09                           | 0.004                        |
| 4,4'-DDD                                 | 0.02U                   | 0.02U        |                                |                              |
| 4,4'-DDE                                 | 0.02U                   | 0.02U        |                                |                              |
| 4,4'-DDT                                 | 0.02U                   | 0.02U        | 0.13                           | 0.001                        |
| Total DDTs                               | 0.02U                   | 0.02U        |                                |                              |

a. Mercury values not established under the C"U" Qualifier denotes analyte not detected at method detection limit

Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

b. Mercury values not established under the California Toxics Rule. Value is the 6-month median from the 1997 Ocean Plan.

Bolded values equal or exceed the maximun 4 day average Water Quality Standard

Table 2. Elutriate Chemistry Results: Port of Los Angeles 2001 Deepening Project Cabrillo Shallow Water Habitat Expansion Area. (Page 2 of 2)

| Analytical Parameter               | Cabrillo Compostie Area | (Salt Water) | WQS Salt Water Max<br>EPA 2000 | WQS Salt Water Cont EPA 2000 |
|------------------------------------|-------------------------|--------------|--------------------------------|------------------------------|
| CHLORINATED PESTICIDES (Continued) |                         |              |                                |                              |
| Dieldrin                           | 0.02U                   | 0.02U        | 0.71                           | 0.0019                       |
| Endosulfan I                       | 0.02U                   | 0.02U        | 0.034                          | 0.0087                       |
| Endosulfan II                      | 0.02U                   | 0.02U        | 0.034                          | 0.0087                       |
| Endosulfan sulfate                 | 0.02U                   | 0.02U        |                                |                              |
| Endrin                             | 0.02U                   | 0.02U        | 0.037                          | 0.0023                       |
| Endrin Aldehyde                    | 0.02U                   | 0.02U        |                                |                              |
| Endrin Ketone                      | 0.02U                   | 0.02U        |                                |                              |
| Heptachlor                         | 0.02U                   | 0.02U        |                                |                              |
| Heptachlor epoxide                 | 0.02U                   | 0.02U        |                                |                              |
| Toxaphene                          | 0.5U                    | 0.5U         |                                |                              |
| Methoxychor                        | 0.05U                   | 0.05U        |                                |                              |
| PCBs (ppb, wet weight)             |                         |              |                                |                              |
| PCB 1242                           | 0.5U                    | 0.5U         |                                |                              |
| PCB 1248                           | 0.5U                    | 0.5U         |                                |                              |
| PCB 1254                           | 0.5U                    | 0.5U         |                                |                              |
| PCB 1260                           | 0.5U                    | 0.5U         |                                |                              |
| Total PCBs                         | 0.5U                    | 0.5U         |                                | 0.03                         |
| SEMI-VOLATILES (ppb, wet wt)       |                         |              |                                |                              |
| Naphthalene                        | 0.1U                    | 0.1U         |                                |                              |
| Acenaphthylene                     | 0.1U                    | 0.1U         |                                |                              |
| Acenaphthene                       | 0.1U                    | 0.1U         |                                |                              |
| Fluorene                           | 0.1U                    | 0.1U         |                                |                              |
| Phenanthrene                       | 0.1U                    | 0.1U         |                                |                              |
| Anthracene                         | 0.1U                    | 0.1U         |                                |                              |
| Fluoranthene                       | 0.1U                    | 0.1U         |                                |                              |
| Pyrene                             | 0.1U                    | 0.1U         |                                |                              |
| Benzo(a)anthracene                 | 0.1U                    | 0.1U         |                                |                              |
| Chrysene                           | 0.1U                    | 0.1U         |                                |                              |
| Benzo(b)fluoranthene               | 0.1U                    | 0.1U         |                                |                              |
| Benzo(k)fluoranthene               | 0.1U                    | 0.1U         |                                |                              |
| Benzo(a)pyrene                     | 0.1U                    | 0.1U         |                                |                              |
| Indeno[1,2,3-CD]pyrene             | 0.2U                    | 0.2U         |                                |                              |
| Dibenzo(a,h)anthracene             | 0.2U                    | 0.2U         |                                |                              |
| Benzo[ghi]perylene                 | 0.2U                    | 0.2U         |                                |                              |
| Total detectable PAHs              | 0.1U                    | 0.1U         |                                | 15                           |
| Total Phenols                      | 0.2U                    | 0.2U         |                                |                              |

Bolded values equal or exceed the maximun 4 day average Water Quality Standard Bolded and underlined values exceed the maximum 1 hour average Water Quality Standard

## **APPENDIX C-2**

PREVIOUS SEDIMENT QUALITY DATA FROM THE AREA OF THE PROPOSED CABRILLO SHALLOW WATER HABITAT EXTENSION AND FROM THE PROPOSED PIER 400 SUBMERGED MATERIALS STORAGE AREA (Kinnetic Laboratories, Inc. 1991)



Table 1. Bulk Sediment Chemistry Results: POLA 2020 Plan - Geotechnical Investigations, Environmental Tasks. Vibracore samples. (Kinnetic Laboratories/ToxScan, Inc. 1991). (Page 1 of 2)

| Vibracore samples. (Kin               |                  |                 |          |                         |                        | AREA<br>17             |                  |          | AREA<br>20 | AREA<br>21              | AREA<br>21       | AREA<br>21 |
|---------------------------------------|------------------|-----------------|----------|-------------------------|------------------------|------------------------|------------------|----------|------------|-------------------------|------------------|------------|
| Analytical Parameter                  | TOP              | MID             | BOT      | TOP                     | MID                    | BOT                    | TOP              | MID      | BOT        | TOP                     | MID              | BOT        |
| GRAIN SIZE (% dry)                    |                  |                 |          |                         |                        |                        |                  |          |            |                         |                  |            |
| Sand/Gravel (>0.063 mm)               | 18.6             | 5.4             | 42.0     | 16.5                    | 2.0                    | 7.8                    | 65.2             | 90.5     | 73.4       | 49.6                    | 91.1             | 87.7       |
| Silt (0.004 mm - 0.063 mm)            | 50.3             | 54.0            | 32.9     | 50.3                    | 54.7                   | 51.1                   | 24.1             | 7.3      | 20.4       | 35.0                    | 7.0              | 8.9        |
| Clay (<0.004 mm)                      | 31.1             | 40.6            | 19.1     | 33.2                    | 43.3                   | 41.1                   | 10.7             | 2.2      | 6.2        | 15.4                    | 1.9              | 3.4        |
| SEDIMENT CONVENTIONALS                |                  |                 |          |                         |                        |                        |                  |          |            |                         |                  |            |
| Total sulfides (mg/Kg, dry)           | 0.3              | ND              | 468.0    | 974                     | 633                    | 1.4                    | 5.4              | 89       | 0.5        | 5.7                     | 18               | 5.7        |
| Water soluble sulfides (mg/Kg, dry)   | ND               | ND              | ND       | 0.4                     | 0.3                    | 0.4                    | 0.3              | 0.5      | ND         | ND                      | ND               | ND         |
| Oil and Grease (mg/Kg, dry)           | 3.9              | 17.1            | 3.8      | 26.5                    | 31.0                   | 14.3                   | 14.2             | 3.2      | 1.3        | 11.2                    | 1.3              | 1.3        |
| TRPH (mg/Kg, dry)                     | 12               | 35              | 19       | 50                      | 64                     | 29                     | 24               | 13       | 15         | 19                      | 17               | 15         |
| % Solids (%)                          | 64               | 59              | 66       | 58                      | 50                     | 53                     | 71               | 78       | 77         | 68                      | 79               | 80         |
| TOC (%)                               | 1.5              | 1.6             | 1.7      | 1.7                     | 1.2                    | 2.2                    | 0.8              | 0.4      | 0.5        | 0.8                     | 0.4              | 0.4        |
| METALS (mg/Kg, dry wt)                |                  |                 |          |                         |                        |                        |                  |          |            |                         |                  |            |
| Arsenic                               | 12.0             | 14.0            | 9.0      | 16.0                    | 14.0                   | 15.0                   | 7.8              | 2.1      | 2.0        | 8.6                     | 2.2              | 2.8        |
| Cadmium                               | 1.2              | 0.6             | 8.0      | 1.0                     | 8.0                    | 1.2                    | 0.5              | ND       | 0.1        | 0.5                     | 0.2              | 0.1        |
| Chromium                              | 99               | 79              | 57       | 110                     | 87                     | 120                    | 51               | 23       | 32         | 59                      | 27               | 28         |
| Copper                                | 66               | 67              | 28       | 120                     | 77                     | 82                     | 29               | 6.8      | 16         | 35                      | 8.5              | 6.3        |
| Lead                                  | 13               | 43              | 3.3      | 45                      | 38                     | 22                     | 23               | 1.0      | 1.9        | 24                      | 1.7              | 0.5        |
| Mercury                               | 0.26             | <u>1.10</u>     | 0.09     | 0.68                    | 1.00                   | 0.73                   | 0.26             | 0.03     | 0.04       | 0.33                    | 0.03             | 0.02       |
| Nickel                                | 41               | 30              | 26       | 36                      | 37                     | <u>55</u>              | 15               | 9.0      | 14         | 19                      | 9.7              | 10         |
| Selenium                              | 5.22             | 0.93            | 1.83     | 2.24                    | 1.65                   | 5.94                   | 0.34             | 0.06     | 0.07       | 0.39                    | 0.07             | 0.09       |
| Silver                                | 1.5              | 1.5             | 1.2      | 1.9                     | 1.5                    | 1.7                    | 0.9              | 0.4      | 0.5        | 1.0                     | 0.6              | 0.5        |
| Zinc                                  | 140              | 180             | 82       | 210                     | 180                    | 180                    | 92               | 37       | 56         | 110                     | 41               | 37         |
| ORGANOTINS (ppb, dry weight)          |                  |                 |          |                         |                        |                        |                  |          |            |                         |                  |            |
| Dibutyltin                            | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| MonobutyItin                          | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| Tetrabutyltin                         | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| Tributyltin                           | ND               | ND              | ND       | 2.0                     | ND                     | 3.6                    | ND               | ND       | ND         | ND                      | ND               | ND         |
| CHLORINATED PESTICIDES (ppb,          | dry wt)          |                 |          |                         |                        |                        |                  |          |            |                         |                  |            |
| Aldrin                                | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| alpha-BHC                             | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| beta-BHC                              | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| delta-BHC                             | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| gamma-BHC (lindane)                   | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| alpha-Chlordane                       | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| gamma-Chlordane                       | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| 4,4'-DDD                              | ND               | ND              | ND       | ND                      | ND                     | ND                     | ND               | ND       | ND         | ND                      | ND               | ND         |
| 4,4'-DDE                              | <u>120</u>       | 24              | ND       | <u>520</u>              | <u>45</u>              | <u>61</u>              | 410              | ND       | ND         | 300                     | 270              | ND         |
| 4,4'-DDT<br>Total DDTs                | ND<br><b>120</b> | ND<br><b>24</b> | ND<br>ND | ND<br><u><b>520</b></u> | ND<br><u><b>45</b></u> | ND<br><u><b>61</b></u> | ND<br><b>410</b> | ND<br>ND | ND<br>ND   | ND<br><u><b>300</b></u> | ND<br><b>270</b> | ND<br>ND   |
| Polded values equal or exceed the EDI | 140              | 44              | טאו      | <u> </u>                | <del>1</del> 3         | <u> </u>               | 710              | טאו      | שואו       | <u> </u>                | <u> </u>         | טאו        |

Bolded values equal or exceed the ERL.

Bolded and underlined values equal or exceed the ERM.

Table 1. Bulk Sediment Chemistry Results: POLA 2020 Plan - Geotechnical Investigations, Environmental Tasks. Vibracore samples. (Kinnetic Laboratories/ToxScan, Inc. 1991). (Page 2 of 2)

| · · · · · · · · · · · · · · · · · · · |           | AREA     |          |           |          | AREA      | AREA      |          | AREA     |           |          | AREA     |
|---------------------------------------|-----------|----------|----------|-----------|----------|-----------|-----------|----------|----------|-----------|----------|----------|
| Analytical Dayanatas                  | 16<br>TOD | 16       | 16       | 17<br>TOD | 17       | 17<br>DOT | 20<br>TOD | 20       | 20       | 21<br>TOP | 21       | 21       |
| Analytical Parameter                  | TOP       | MID      | BOT      | TOP       | MID      | ВОТ       | TOP       | MID      | ВОТ      | TOP       | MID      | ВОТ      |
| CHLORINATED PESTICIDES (Continued)    | NID       | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Dieldrin                              | ND        | ND       | ND<br>ND | ND        | ND       | ND        | ND        | ND       | ND<br>ND | ND        | ND       | ND<br>ND |
| Endosulfan I<br>Endosulfan II         | ND<br>ND  | ND<br>ND | ND       | ND<br>ND  | ND<br>ND | ND<br>ND  | ND<br>ND  | ND<br>ND | ND<br>ND | ND<br>ND  | ND<br>ND | ND<br>ND |
| Endosulfan sulfate                    | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Endosulian sullate                    | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Endrin Aldehyde                       | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Endrin Ketone                         | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Toxaphene                             | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| PCBs (ppb, dry weight)                | 110       | ND       | IID      | IND       | ND       | ND        | ND        | IND      | ND       | ND        | ND       | IND      |
| PCB 1242                              | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| PCB 1254                              | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| PCB 1260                              | ND        | ND       | ND       | ND        | ND       | ND        | ND        | 1600     | ND       | ND        | ND       | ND       |
| Total PCBs                            | ND        | ND       | ND       | ND        | ND       | ND        | ND        | 1600     | ND       | ND        | ND       | ND       |
| SEMI-VOLATILES (ppb, dry wt)          |           |          |          |           |          |           |           |          |          |           |          |          |
| Naphthalene                           | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Acenaphthylene                        | ND        | 36.8     | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Acenaphthene                          | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Fluorene                              | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Phenanthrene                          | ND        | 43.7     | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Anthracene                            | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Fluoranthene                          | ND        | 130      | ND       | 42.1      | 74       | ND        | 29.3      | ND       | ND       | ND        | ND       | ND       |
| Pyrene                                | ND        | 163      | 31.2     | 63.1      | 105      | 43.4      | 37.7      | ND       | ND       | 36.9      | ND       | ND       |
| Benzo(a)anthracene                    | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Chrysene                              | ND        | 73.2     | ND       | ND        | 43.7     | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Benzo(b)fluoranthene                  | ND        | 138      | ND       | 123       | 72       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Benzo(k)fluoranthene                  | ND        | 131      | ND       | 100       | 82.5     | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Benzo(a)pyrene                        | 436       | 139      | 767      | 109       | 290      | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Indeno[1,2,3-CD]pyrene                | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Dibenzo(a,h)anthracene                | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Benzo[ghi]perylene                    | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |
| Benzo(e)pyrene                        | NA        | NA       | NA       | NA        | NA       | NA        | NA        | NA       | NA       | NA        | NA       | NA       |
| Total detectable PAHs                 | 436       | 855      | 798      | 437       | 667      | 43.4      | 67.0      | ND       | ND       | 36.9      | ND       | ND       |
| Total Phthalates                      | ND        | ND       | ND       | 17.7      | ND       | ND        | ND        | 64.2     | ND       | 250.0     | ND       | ND       |
| Total Phenols                         | ND        | ND       | ND       | ND        | ND       | ND        | ND        | ND       | ND       | ND        | ND       | ND       |

Bolded values equal or exceed the ERL.

Table 2. Toxicity Results: POLA 2020 Plan - Geotechnical Investigation, Environmental Tasks (Kinnetic Laboratories/ToxScan, Inc. 1991).

|                                                | AREA  | AREA  | AREA  | AREA  | AREA  | AREA | AREA  | AREA  | AREA  | AREA  | AREA  | AREA  |
|------------------------------------------------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|-------|
|                                                | 16    | 16    | 16    | 17    | 17    | 17   | 20    | 20    | 20    | 21    | 21    | 21    |
|                                                | TOP   | MID   | ВОТ   | TOP   | MID   | ВОТ  | TOP   | MID   | ВОТ   | TOP   | MID   | ВОТ   |
| Water Column Bioassays                         |       |       |       |       |       |      |       |       |       |       |       |       |
| (100%, 50% & 10% Elutriate)                    |       |       |       |       |       |      |       |       |       |       |       |       |
| Crassostrea gigas Survival (100% Elutriate)    | 108.9 | 99.2  | 103.6 | 98.3  | 104.0 | 93.0 | 111.4 | 99.6  | 87.7  | 106.1 | 93.8  | 98.8  |
| Crassostrea gigas Survival (50% Elutriate)     | 89.9  | 105.5 | 102.3 | 100.3 | 103.0 | 94.4 | 102.6 | 101.8 | 105.7 | 112.7 | 96.5  | 106.4 |
| Crassostrea gigas Survival (10% Elutriate)     | 114.6 | 95.7  | 93.2  | 94.5  | 106.4 | 98.2 | 99.4  | 106.8 | 102.3 | 96.9  | 103.6 | 98.8  |
| Control Survival                               | 99    | 99    | 99    | 99    | 99    | 99   | 99    | 99    | 99    | 99    | 99    | 99    |
| Crassostrea gigas Development (100% Elutriate) | 94.7  | 93.9  | 95.1  | 99.3  | 92.9  | 93.9 | 93.1  | 96.2  | 95.3  | 96.2  | 93.1  | 90.0  |
| Crassostrea gigas Development (50% Elutriate)  | 96.1  | 91.0  | 94.3  | 95.1  | 94.3  | 92.3 | 97.4  | 96.4  | 96.0  | 92.6  | 97.3  | 93.8  |
| Crassostrea gigas Development (10% Elutriate)  | 95.2  | 95.2  | 96.3  | 95.5  | 97.3  | 95.2 | 96.4  | 95.3  | 97.7  | 95.8  | 95.9  | 92.2  |
| Control Development                            | 96    | 96    | 96    | 96    | 96    | 96   | 96    | 96    | 96    | 96    | 96    | 96    |
| Benthic Bioassays                              |       |       |       |       |       |      |       |       |       |       |       |       |
| (% Survival, % Reburial)                       |       |       |       |       |       |      |       |       |       |       |       |       |
| Grandidierella japonica Reburial               | 86.7  | 79.2  | 85.2  | 81.6  | 92.5  | 88.6 | 91.9  | 77    | 92.7  | 85.4  | 88.5  | 90.5  |
| Grandidierella japonica Survival               | 90    | 94    | 92    | 97    | 93    | 87   | 96    | 93    | 89    | 96    | 87    | 85    |
| Control Survival                               | 90    | 90    | 90    | 90    | 90    | 90   | 90    | 90    | 90    | 90    | 90    | 90    |